
Elasticia FIX Protocol

Elasticia FIX Protocol
Version 2.0.8 - 2025-07-28

Copyright © Nordic Growth Market AB

Contents
1. Overview .. 1

1.1. About this Document .. 1
2. General Service Information .. 1

2.1. Data Types .. 1
2.2. FAST Encoding .. 2
2.3. Recovery .. 2
2.4. Filtering .. 2
2.5. Throttling Limits . 3
2.6. Component Blocks .. 3
2.7. Session Messages .. 3
2.8. General Application Level Messages 6

3. Order Entry Service .. 6
3.1. User Model . 6
3.2. Action on Connection Loss .. 7
3.3. Full Snapshot Recovery .. 7
3.4. Provider Connection .. 7
3.5. Message Overview .. 7
3.6. Parties Information .. 8
3.7. Order Messages .. 8
3.8. Quote Messages .. 13
3.9. Trade Messages .. 16
3.10. Financial Status Messages .. 21
3.11. Quote Validation .. 22
3.12. Quote on Demand .. 22

4. Market Data Service .. 23
4.1. Full Snapshot Recovery .. 23
4.2. Message Overview .. 23
4.3. Component Blocks .. 23
4.4. Security Messages .. 25
4.5. Market Structure Messages .. 27
4.6. Market Data Messages .. 28
4.7. Corporate Action Messages .. 32

5. MiFID II Regulatory elds .. 33
5.1. Post trade transparency .. 33
5.2. Order Record Keeping .. 34

1. Overview

The NGM FIX protocol is the main protocol for communicating
with the NGM trading system. The following standard protocols
are used:

• FIX 5.0 Service Pack 2 for application level messages.

• FIX session protocol FIXT 1.1 for maintaining FIX sessions.

• FIX Classic (tag-value) is supported for message encoding.

• FAST 1.1 (FIX Adapted for STreaming) is supported for message
encoding. In this case FAST SCP 1.1 (Session Control Protocol),
level 2 (hello, alert and reset messages) is used for managing
FAST sessions.

• TCP is used as the underlying reliable transport protocol.

Two services are oered to the user; Order Entry for order man-
agement, order status, trade reporting and similar tasks, and a
Market Data for market data, reference data and other infor-
mation. Message filtering allows a user to limit which messages
can be sent or will be received on a service.

1.1. About this Document

The reader of this document should be somewhat familiar with
the FIX protocol. Any non-standard FIX elds or changes from
the FIX standard are clearly highlighted. Whenever the FIX pro-
tocol specification is unclear or something must be bilaterally
agreed it is also described in this document.

Section 1 (this section) gives an overview of the NGM FIX
protocol.

Section 2 describes the parts of the protocol that are com-
mon across all services, including the session
layer.

Section 3 explains the order entry service which is used for
orders, quotes and trades.

Section 4 explains the market data service which is used
for dissemination of market data and reference
data.

Section 5 explains how regulatory elds are used.

2. General Service Information

This section describes the parts of the protocol that are com-
mon across all services.

2.1. Data Types

Throughout this document, the FIX data types are used for doc-
umentation in message tables, with the following exceptions
and clarifications:

• uint32 and uint64: corresponds to FIX type int and FAST types
uInt32 and uInt64.

• decimal: corresponds to FIX type oat and FAST type deci-
mal.

• String: Any 7-bit ASCII except the <SOH> delimiter (0x01). Cor-
responds to FIX type String and FAST type String with charset
"ascii" (7-bit).

• UnicodeString: Unicode string that corresponds to FIX types
data and XMLData (UTF-8), and FAST type String with charset
"unicode".

• char: mapped to FAST uInt32 containing the ASCII value of
the char.

• UTCTimestampMicros: corresponds to FIX UTCTimestamp
(with micro second resolution) and FAST uInt64 encoded as
microseconds since January 1, 1970 UTC, without leap sec-
onds (POSIX compliant).

• Length: A uInt32 value that specifies the number of bytes in
the corresponding data eld.

1 / 34

Elasticia FIX Protocol

In FIX several types are used for enumerations: integer, char
and String. In the documentation these enum types will be dif-
ferentiated by single quotes around char enums, e.g. '1' means
49, and double quotes around String enums.

2.1.1. Identifiers and Maximum String Lengths

Identifiers generated by the exchange only contain characters
A-Z, 0-9 and +-:.,? with the maximum length 16.

The following client-assigned elds are restricted to 7-bit ASCII
printable characters (0x20 - 0x7f), with maximum lengths as
dened below:

• ClOrdID 32 bytes.

• QuoteMsgID 32 bytes.

• TradeReportID 32 bytes.

• Account 255 bytes.

• PartySubID person in one-party-for-pass-thru trades, 255
bytes.

2.2. FAST Encoding

FAST 1.1 message encoding is provided. FAST SCP (Session Con-
trol Protocol) 1.1 level 2 is used as a thin layer on top of TCP which
is used as the transport protocol. The FAST SCP 1.1 level 2 pro-
vides messages like Hello, Alert and Reset for logon, notification
and FAST specific functionality such as dictionary reset.

A FAST stream can be sent as a sequence of messages or blocks
where each block consists of a sequence of messages, in addi-
tion a block size is preceding each block. NGM uses blocks
with one message per block. The block size value specifies the
size in bytes of the following message, not including the size of
the actual block size eld. According to FAST 1.1, the block size
should be an unsigned integer that may be overlong, NGM has
chosen to encode the block size as a 4 byte overlong unsigned
integer.

2.2.1. FAST Templates

The FAST templates specifies how messages are encoded.
Static FAST templates are used and any changes to the tem-
plates are considered a protocol change.

FAST templates need to be mapped to FIX messages. The fol-
lowing mapping rules are used.

• Message level: FIX message name as appearing in the FIX
repository (e.g. "NewOrderSingle") = FAST application type
(typeRef).

• Field level: FIX eld tag = FAST eld auxiliary identifier.

• Type conversion: No type conversion is made. E.g. a FIX eld
of string type requires that the corresponding FAST eld is
also of string type.

• Missing elds in FAST: If a FIX eld is missing in the FAST tem-
plate, the eld is assumed to be absent. This is only valid for
optional FIX elds.

• Extra elds in FAST: If the FAST template contains a eld that
cannot be mapped to a FIX eld, it is parsed and ignored.

• Sequence elds: Sequence elds in FAST are mapped to the
corresponding NoXXX eld in FIX, e.g. for NoSides (552) the
FAST sequence auxiliary identifier should be 552.

• Group elds in FAST: FAST group elds are flattened before
mapping to FIX.

• Dynamic template ref in FAST: Not supported/used.

Because of this mapping, the FIX eld MsgType is not really
required for message type identification in the FAST context.

2.3. Recovery

During session initialization, message gaps can occur. These
are detected by observing the message sequence number. In
these cases two recovery mechanisms are supported; message
recovery and full snapshot recovery. Message recovery is the
preferred way to quickly recover a few lost messages. In certain
cases a session reset is required, e.g. too long time since last
connection or disaster recovery (e.g. lost session state). Aer a
reset the client must do a full snapshot recovery.

Message recovery is only accepted during logon by observ-
ing the NextExpectedMsgSeqNum eld. Note that the
ResendRequest message is not supported. See Section 2.7.1,
“Logon (A)” for more information and message scenarios.

During full snapshot recovery the client should expect unso-
licited updates mixed with snapshot replies, especially if a
snapshot is requested intraday. It is guaranteed that the last
message received is always the most recent one, regardless if
it is a snapshot reply or an unsolicited update.

2.4. Filtering

For users requiring limited information, functionality or privi-
leges, filtering can be applied to control what can be sent by
the exchange or the user. Filtering configuration is performed
by contacting the exchange.

For each data class, the following filter rules exist (based on
roles):

All The user can send operations, receive live
changes and request snapshots. This is the
default.

Read-only The user can only receive live changes and
request snapshots.

None The user cannot send operations nor receive any
data.

Unauthorized operations will be rejected with the Business Mes-
sage Reject message with BusinessRejectReason set to 6 (Not
Authorized).

All messages are sent to all users in the trader group except
snapshot replies, rejects and session control messages (logon
replies and such). As such clients should be aware they will
receive the replies (execution reports, trade capture reports
and so forth) generated by their peers activities in the market.
If this is undesired the user should be in its own trader group or
use filtering. Having a private trader group is used if one user
does not wish to get information about his peers activities in the
market but only his own. Filtering is used if the user wishes to see
only certain information, for example only trades, but from all
users in the trader group.

2 / 34

Elasticia FIX Protocol

What messages are included in each chapter is dened in the
messages overview section in each service chapter.

2.5. Throttling Limits

Each FIX session has throttling limits on:

• Inbound rate

• Outstanding requests

The inbound rate throttle, limits the number of messages that
can be sent to the exchange per second. The throughput
counter is reset each second (i.e. not a sliding window). When
the throughput exceeds the limit, a Business Message Reject
message is sent and any additional messages are delayed until
the next second.

The outstanding request throttle, limits the number of outstand-
ing requests that can be sent to the exchange, without receiving
a response on the previous requests. The outstanding request
counter is calculated in the FIX gateway, and incremented on
requests and decremented on responses. When the number
of outstanding requests exceeds the limit, a Business Message
Reject message is sent (max once a second) and any addi-
tional messages are delayed until any previous request has got
a response.

The delaying of the operations is performed at the TCP level,
resulting in queues rst in the exchange TCP buer, then in the
client side TCP buer and nally in the client side application
code. This means that the easiest way of avoiding delays is sim-
ply not to exceed the throughput limit. Continuous monitoring
of the delay of operations is another approach.

The throttle limits that are used for your FIX session is only avail-
able oine (outside the protocol), i.e. contact the exchange for
more information.

2.6. Component Blocks

2.6.1. Standard Header

The Standard Header is included in all FIX messages.

The CompID elds denotes the member or trader group on one
side, and the marketplace or market data channel on the other
side. The Sender- and TargetCompID pair identifies a FIX ses-
sion.

For inbound messages (to the marketplace):

• SenderCompID denotes the member or trader group.

• TargetCompID denotes the marketplace (or market data
channel).

For outbound messages (from the marketplace):

• SenderCompID denotes the marketplace (or market data
channel).

• TargetCompID denotes the member or trader group.

For inbound messages when sending messages via third party
rm (service provider connection):

• SenderCompID denotes the member or trader group of the
service connection.

• TargetCompID denotes the marketplace (or market data
channel).

• OnBehalfOfCompID denotes the member or trader group of
the origin rm.

For outbound messages (from the marketplace) when address-
ing a member via a third party rm (service provider connec-
tion):

• SenderCompID denotes the marketplace (or market data
channel).

• TargetCompID denotes the member or trader group of the
service connection.

• DeliverToCompID denotes the member or trader group of the
destination rm.

Tag Field Name Type Req

MsgSeqNum uint64 Y34

Message sequence number.

SenderCompID String Y49

Identifies sender rm (and trader group).

TargetCompID String Y56

Identifies target rm (and trader group).

OnBehalfOfCompID String N115

Identifies sending rm, used when sending mes-
sages via a third party.

DeliverToCompID String N128

Identifies target rm, used when sending messages
via a third party.

SendingTime UTCTime-
stampMicros

Y52

Time of message transmission.

2.6.2. Security Ref

The Security Ref component block is used to identify a secu-
rity. Securities (order books) are always identified by a market-
place assigned identifier. This identifier is, together with other
identifiers (e.g. ISIN and symbol), published in Security Definition
Update Report and Security List messages.

Tag Field Name Type Req

SecurityID String N48

Security identifier of type specified in Securi-
tyIDSource.

SecurityIDSource char N22

Identifies the class of SecurityID. Only Market-
place-assigned identifier is allowed in this context.
'M'=Marketplace-assigned identifier
'4'=ISIN
'8'=Exchange Symbol
'D'=Valoren

2.7. Session Messages

The standard FIX transport is used for maintaining FIX sessions
with some exceptions.

3 / 34

Elasticia FIX Protocol

FIX session sequence numbers (MsgSeqNum) starts at 1 and are
normally never reset by the exchange, not even at midnight.
Instead, they are incremented forever. 24/7 connectivity is sup-
ported, but MsgSeqNum cannot be reset during a connection.
This means that SequenceReset with reset is not supported, nor
is exchange of Logon messages during a session (i.e. aer the
rst Logon). The MsgSeqNum may be reset (to 1) at logon if
desired. The MsgSeqNum is represented as a 64-bit integer.

The NextExpectedMsgSeqNum eld is used to resynchronize a
FIX session upon logon. Because of this and due to the fact that
TCP is used as the underlying (reliable) transport protocol the
ResendRequest message is not needed nor supported.

Note that if no Logon message is received within a certain time,
the connection will be closed.

2.7.1. Logon (A)

The Logon message is used to initiate a FIX session. When con-
necting to NGM the following values should be set as follows:

HeartBeatInterval 10 seconds.

SenderCompID As configured for the FIX session.

TargetCompID As configured for the FIX session.

Username Specifies the user to logon.

The Logon message is a part of the message recovery mecha-
nism. The NextExpectedMsgSeqNum eld is used to resynchro-
nize a FIX session upon logon. By observing this eld each party
can detect which messages need to be resent to the other party.

If the acceptor (the exchange) detects an error/mismatch in the
Logon message received it replies with a Logout message with
any of the following SessionStatus values:

Session state is lost see Section 2.3, “Recovery”.

Message recovery not avail-
able

the initiator need messages
too far in the past to be resent.

NextExpectedMsgSeqNum is
too high

the session state is bro-
ken. This indicates some kind
of error (e.g. software error,
human error).

MsgSeqNum is too low the session state is bro-
ken. This indicates some kind
of error (e.g. software error,
human error).

Incorrect reset the sequence number is not
set to one when resetting the
session.

If the initiator receives any of these errors from the acceptor
or detects an error/mismatch in the Logon message received
it should disconnect and reconnect with logon reset followed
by a full snapshot recovery. The last two SessionStatus codes
indicates some other problem that should also be investigated,
but the same recovery procedure is still valid.

The figure below shows an example logon scenario. Any mes-
sages that need to be resent are sent directly aer the logon
messages has been exchanged. The Logon message with
MsgSeqNum=123 is resent as a gap-ll directly aer the mes-
sages 90-122 have been resent.

Figure 1. Logon procedure with automatic retransmission of
messages.

Logon
MsgSeqNum=45
NextExpectedMsgSeqNum=90

Logon
MsgSeqNum=123
NextExpectedMsgSeqNum=46

Initiator Acceptor

No resend

Next message is 46

Resend messages
90-122, 123
Next message is 123

If the initiator want to reset the session it can logon with the
ResetSeqNumFlag set (see figure below). The MsgSeqNum must
then also be reset to 1 in the initiator’s Logon message. The
acceptor will also respond with the ResetSeqNumFlag set and
MsgSeqNum set to 1. From that point on both parties will con-
tinue with sequence number 2.

Figure 2. A reset requested by the initiator.

Logon
MsgSeqNum=1
ResetSeqNumFlag='Y'
NextExpectedMsgSeqNum=1

Logon
MsgSeqNum=1
ResetSeqNumFlag='Y'
NextExpectedMsgSeqNum=2

Initiator Acceptor

Next message is 2 Next message is 2

Logon:

• is replied to with a Logon message

• can be rejected with a Logout message, with SessionStatus
set to the reject reason

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to A

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the Logon message

Logon is sent:

• in reply to a Logon message

Tag Field Name Type Req

 component block <StandardHeader>

4 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

EncryptMethod uint32 Y98

Method of encryption.
0=None / Other

HeartBtInt uint32 Y108

Heartbeat interval (seconds).

DefaultApplVerID String Y1137

Valid value: "FIXLatest".

ResetSeqNumFlag char N141

Indicates both sides of a FIX session should reset
sequence numbers. Absence means 'N'.
'N'=No
'Y'=Yes, reset sequence numbers

NextExpectedMsgSe-
qNum

uint64 Y789

Message sequence number gap detection.

553 Username String N

554 Password String N

2.7.2. Logout (5)

The Logout message initiates or confirms the termination of a
FIX session. The logout initiator should wait for the opposite side
to respond with a confirming logout message before discon-
necting.

Logout:

• is replied to with a Logout message, with SessionStatus set to
4 (LogoutComplete)

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to 5

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the Logout message

Logout is sent:

• in reply to a Logout message, with SessionStatus set to 4
(LogoutComplete)

• to reject a Logon message, with SessionStatus set to the
reject reason

Tag Field Name Type Req

 component block <StandardHeader>

SessionStatus uint32 N1409

Session status at time of logout.
4= Session logout complete
5= Invalid username or password
6= Account Locked
7= Logons are not allowed at this time
9= Initiators MsgSeqNum is too low.
10= Initiators NextExpectedMsgSeqNum is too high.
100= Requested history is not available.
103= Acceptor has lost the session state.
104= Initiators MsgSeqNum must be equal to one
when resetting the session.

Tag Field Name Type Req

58 Text String N

2.7.3. Test Request (1)

The Test Request message is used for requesting a Heartbeat
message to establish that the session is alive. When receiving a
Test Request, you should reply with a Heartbeat with the TestRe-
qID eld set to the value contained in the received Test Request
message. Note that Test Request should not be sent unless it’s
necessary, that is, when you haven’t sent any message (not just
Test Request and Heartbeat) for HeartBtInt seconds.

Any message you send is an indication that you’re alive and any
message you receive is an indication that the sender is alive.

TestRequest:

• is replied to with a Heartbeat message, with TestReqID set to
the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to 1

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the TestRequest message

TestRequest is sent:

• unsolicited, when you haven’t received any message (not
just TestRequest or Heartbeat messages) from the peer for
HeartBtInt seconds.

Tag Field Name Type Req

 component block <StandardHeader>

112 TestReqID String Y

2.7.4. Heartbeat (0)

Heartbeat sent either unsolicited or as a reply to a Test Request
message. When receiving a Heartbeat, you should not reply to
it. This also means that you won’t receive a reply from the peer
aer sending a Heartbeat. Note that Heartbeat shouldn’t be
sent unless necessary, that is, when you haven’t sent any mes-
sage (not just Test Request and Heartbeat) for HeartBtInt sec-
onds.

Any message you send is an indication that you’re alive and any
message you receive is an indication that the sender is alive.

Heartbeat is sent:

• unsolicited, when you haven’t sent any message (not
just TestRequest or Heartbeat messages) to the peer for
HeartBtInt seconds.

• in reply to a TestRequest message, with TestReqID set to the
value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

112 TestReqID String N

5 / 34

Elasticia FIX Protocol

2.7.5. SequenceReset (4)

The Sequence Reset message is only used for sending gap lls
during message retransmission.

Tag Field Name Type Req

 component block <StandardHeader>

GapFillFlag char N123

'Y'=Gap Fill Message, Msg Seq Num Field Valid

NewSeqNo uint64 Y36

Next sequence number.

2.7.6. Reject (3)

Session level reject message.

Reject is sent:

• to reject any message, with SessionRejectReason set to the
reject reason and RefSeqNum set to the sequence number of
the rejected message

Tag Field Name Type Req

 component block <StandardHeader>

RefSeqNum uint64 Y45

MsgSeqNum of the rejected message.

RefMsgType String N372

The FIX type of the message being referenced.

RefTagID uint32 N371

The FIX eld being referenced.

SessionRejectReason uint32 N373

1=Required Tag Missing
5=Value is incorrect (out of range) for this tag
6=Incorrect data format for value
9=CompID problem
10=SendingTime Accuracy Problem
11=Invalid MsgType
14=Tag specified out of required order
99=Other

Text String N58

Error message.

2.8. General Application Level Messages

2.8.1. Business Message Reject (j)

The Business Message Reject message can reject an applica-
tion-level message which fulfills session level rules and cannot
be rejected via any other means.

BusinessMessageReject is sent:

• to reject any message, with BusinessRejectReason set to the
reject reason and RefMsgType set to MsgType of the rejected
message

Tag Field Name Type Req

 component block <StandardHeader>

Tag Field Name Type Req

RefMsgType String Y372

The MsgType (35) of the FIX message being refer-
enced.

BusinessRejectRefID String N379

The value of the business-level "ID" eld on the mes-
sage being referenced.

BusinessRejectReason uint32 Y380

Code to identify reason for a Business Message
Reject message.
0=Other
1=Unknown ID
2=Unknown Security
3=Unknown Message Type
4=Application not available
5=Conditionally required eld missing
6=Not Authorized
7=DeliverTo rm not available at this time
18=Invalid price increment

Text String N58

Where possible, message to explain reason for
rejection

3. Order Entry Service

The order entry service is used for sending trading operations to
and receiving trading related updates from the exchange. The
traffic is of a mixed interactive and non-interactive “multicast”
nature. Interactive since information is sent from the exchange
in direct response to an operation from the user. Non-interac-
tive since information is also sent spontaneously (not in direct
response to a request from the user) from the exchange. Multi-
cast since the same information is sent to a group of users of
the service rather than a specific user (drop copies).

Examples of interactive traffic include creation and manage-
ment of orders and registration of manual trades. Examples of
non-interactive traffic include trades (which happen “sponta-
neously” seen from the perspective of the passive party). An
example of multicast traffic includes order updates for orders
created by another user in the same trader group. An example
of non-multicast traffic is replies to snapshot requests.

As a consequence of the non-interactive and multicast proper-
ties of the service, data (typically trades) is pushed to a user’s
session even when a user is oine. No subscription requests are
required nor supported by the service. Instead, a user needs to
synchronize with the service when logging on, either on the ses-
sion level (by requesting retransmission of lost messages) or on
the application level (by requesting snapshots).

3.1. User Model

The user model in the order entry service is divided into three
levels; organization, trader group and user. Within the organi-
zation level orders are matched as internal trades. An organi-
zation can have one or more trader groups, which in turn can
have one or more users.

Ownership of orders and trades lies on the trader group level,
and changes to this data is sent to all users within the trader
group. This means that users within the same trader group can

6 / 34

Elasticia FIX Protocol

see and modify each other’s orders and trades, and receive the
result of each other’s operations.

Each user has a separate FIX session to the private service. A
snapshot request will only aect the session that requested it.

For example a backup system (hot standby) should be part of
the same trader group as the primary system, and will receive
drop copies of the result of the operations that the primary sys-
tem sends to the exchange.

For example if an organization has two different systems, e.g.
one for quotation and another for client orders, they can be put
into different trading groups to minimize interference of each
other. They will still benefit from internal trades as long as they
are part of the same organization.

3.2. Action on Connection Loss

The trading system has a mechanism for handling “unman-
aged orders” (and quotes) when a user loses its connection. The
mechanism is used to ensure that the organization does not end
up in a situation where the market is changing rapidly while the
organization has orders or quotes in the market that they are
not able to control, because of a network problem, or a hard-
ware crash for example.

The mechanism is activated if a user is disconnected for any
reason (except logging out normally) and the disconnected user
was the only logged in user in its trader group with order (or
quote) managing privileges, which is decided from the filtering
settings for the user.

The action performed when the mechanism is activated can be
configured individually for each order (see ExecInst in the Order
component block and be set to delete or do nothing with the
order. The action for quotes is always delete. The action is only
executed if the security is ready to trade (open).

Note that if a client stops sending heartbeat messages as
requested it will be disconnected which in turn can trigger the
action on connection loss mechanism.

3.3. Full Snapshot Recovery

On the order entry service snapshots can be requested for the
following:

Orders See the Order Mass Status Request message in Sec-
tion 3.7.7, “Order Mass Status Request (AF)”.

Quotes See the Quote Status Request message in Sec-
tion 3.8.6, “Quote Status Request (a)”. An alternative
is to cancel all quotes instead of requesting a snap-
shot. However, the time priority of quotes will be lost
and all other users within the same trader group will
be aected by the quote cancellations.

Trades See the Trade Capture Report Request message in
Section 3.9.6, “Trade Capture Report Request (AD)”.

3.4. Provider Connection

A FIX connection can serve as a provider connection 'on behalf
of' a member who does not have its' own connection to NGM.
One single provider connection may serve multiple members.

The provider connection will use the eld OnBehalfOfCompID
to distinguish the serviced organisations when sending mes-
sages to the NGM exchange. Outbound messages will contain
information in the eld DeliverToCompID which refers to the
OnBehalfOfCompID eld of the inbound messages.

A provider may send orders, quotes and trades on behalf of
another member.

Note that a provider account needs explicit authorization by
NGM for each member and user it will serve as OnBehalfOf.

3.4.1. Supported messages

Inbound messages allowed for usage of OnBehalfOfCompID:

• NewOrderSingle

• OrderCancelReplaceRequest

• OrderCancelRequest

• Quote

• QuoteCancel

• TradeCaptureReport

Outbound messages using DeliverToCompID:

• ExecutionReport

• TradeCaptureReport

• OrderCancelReject

• QuoteStatusReport

• BusinessMessageReject

3.5. Message Overview

The following messages can be sent/received by the client to/
from the order entry service. Depending on the role only a sub-
set of the following messages may be sent/received.

Table 1. Message overview.

Message Class All? Read-
only?

NewOrderSingle
OrderCancelReplaceRequest
OrderCancelRequest
ExecutionReport

Order
Order
Order
Order

send
send
send
recv

recv

OrderCancelReject
OrderMassStatusRequest

Order
Order

recv
send

recv
send

Quote
QuoteCancel
QuoteStatusReport
QuoteRequest
QuoteStatusRequest

Quote
Quote
Quote
Quote
Quote

send
send
recv
recv
send

recv
recv
send

TradeCaptureReport
TradeCaptureReportAck
TradeCaptureReportRequest
TradeCaptureReportReques-
tAck

Trade
Trade
Trade
Trade

both
recv
send
recv

recv
recv
send
recv

7 / 34

Elasticia FIX Protocol

Message Class All? Read-
only?

UserSecurityStatusUp-
dateRequest
UserSecurityStatusUpdateRe-
sponse

Security status
Security status

send
recv

recv

The following are examples of roles that could suit certain sys-
tems that do not wish to receive all data.

Back-oce system that only need drop copies of trades
from other users in the same trader
group: Order=none, Quote=none,
Trade=read-only.

Mass quoting system that do not need to see (client)
orders: Order=none, Quote=all,
Trade=all.

Client order system that only manage client orders (not
quotes) and that do submit man-
ual trades: Order=all, Quote=none,
Trade=all.

3.6. Parties Information

Orders, quotes and trades contains parties information. The
parties information can be split up in two broad data sets:

Regulatory Information Regulatory information about
the parties behind the order,
quote or trade using short
codes. Only revealed to the
owner, and copied from
orders and quotes to trade
when they are matched.

Counterparty Identification Identifies member and/or
user group of buy and sell
sides of a trade. Revealed to
both sides. For manual trade
reporting, an optional name
of the trader may be speci-
fied.

3.6.1. Regulatory Parties Information

For EU markets it is mandatory to provide party information on
orders, quotes and manually reported trades. See Section 5.2,
“Order Record Keeping” for more information.

The following party roles are used for regulatory party informa-
tion:

• ClientID (3)

• Executing trader (12)

• Investment decision maker (122)

The regulatory party information is specified with the following
elds:

• PartyIDSource (447) - Always ShortCodeIdentifier (P)

• PartyID (448) - The short code value

• PartyRoleQualifier (2376) - The role qualifier

PartySubIDs (802) is not used in this context.

3.6.2. Counterparty Identification

In Trade Capture Reports there is a need to identify the own side
and the counterparty rm. This applies to following party roles:

• Buyer/Seller (27) - The initiator side

• Contra Firm (17) - The counterparty side

The party identification values are specified with the following
elds:

• PartyIDSource (447) - Always CustomCode (D)

• PartyID (448) - The member code

• PartySubID (523) - Usage depends on PartySubIDType (803):

• System (3) - The full trader group code (defaults to member
code)

• Person (2) - Optional: The name (or email etc.) of the trader/
desk, for routing in the one-party-for-pass-thru model.

PartyRoleQualifier (2376) is not used in this context.

3.7. Order Messages

An order can be identified in a number of ways:

ClOrdID Client assigned identifier (mandatory).
It must be unique within a security and
trader group. This identifier must change
each time the client updates the order
and thus denotes a revision of the order.

OrderID Market place assigned identifier which
does not change during the lifetime of
the order.

SecondaryOrderID Reference to the current MDEntryID in
the market data which identifies the
order. This identifier is only present for
orders that are visible in the market data
and it may change whenever the order
is seen as a new order in the market data
(e.g. rells of iceberg orders).

Either OrigClOrdID or OrderID is required for order modification
and deletion. Usage of OrigClOrdID allows for chaining of order
operations.

3.7.1. Order Component Block

This component block is used to dene an order.

Tag Field Name Type Req

Side char Y54

'1'=buy
'2'=sell

40 OrdType char N

8 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

'1'=market
'2'=limit

Price decimal N44

Required for limit orders.

38 OrderQty decimal N

DisplayQty decimal N1138

Displayed quantity on iceberg/reserve order.

DisplayWhen char N1083

Instructs when to refresh DisplayQty.
'1'=Immediate (aer each ll)
'2'=Exhaust (when DisplayQty = 0)

DisplayMethod char N1084

Denes what value to use in DisplayQty. If not speci-
fied the default DisplayMethod is '1'.
'1'=Initial (use original DisplayQty)
'2'=New (use RefreshQty)

1088 RefreshQty decimal N

TimeInForce char N59

Absence means '0'.
'0'=Session
'1'=Good Till Cancel(GTC)
'3'=Immediate Or Cancel (IOC)
'4'=Fill Or Kill (FOK)
'6'=Good Till Date (GTD)
'B'=Good For Auction (GFA).

An order that is valid for an auction initiated by a
trading rm, see AuctionType for examples.

126 ExpireTime UTCTime-
stampMicros

N

TransactTime UTCTime-
stampMicros

N60

When this order request was created, updated or
cancelled.

Account String N1

Account information that will be echoed back.

ExecInst MultipleChar-
Value

N18

Instructions for order handling (separated with
spaces). Valid values:
'd'=Sweep Order Book. Custom value.
'o'=Cancel on connection loss

OrderRestrictions MultipleChar-
Value

N529

Restrictions associated with an order.
'B'=Issuer Holding
'C'=Issue Price Stabilization

AuctionType uint32 N1803

Conditionally required for auction orders.
100=Quote on demand auto execute or cancel. Cus-
tom value.

3.7.2. New Order Single (D)
The New Order Single message is used to create a new order.
The response is always an Execution Report, including rejects.

NewOrderSingle:

• is replied to with an ExecutionReport message, with ClOrdID
set to the value in the request message

• can be rejected with an ExecutionReport message, with Exec-
Type set to '8' (Rejected) and ClOrdID set to the value in the
request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to D

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the NewOrderSingle message

Tag Field Name Type Req

 component block <StandardHeader>

11 ClOrdID String Y

 component block <SecurityRef>

 component block <Order>

OrderCapacity char N528

Designates the capacity of the rm placing the
order. Absence means 'R'.
'P'=Principal (Deal)
'R'=Riskless principal (Matched)
'A'=Agency (Any other capacity)

OrderOrigination uint32 N1724

Identifies the origin of the order. Absence means
non DEA.
5=Order received from a direct access or sponsored
access customer

2593 NoOrderAttributes Sequence N

→OrderAttributeType uint32 Y2594

2=Liquidity provision activity order (when together
with OrderAttributeValue=Y, it signifies that the
order was submitted "as part of market making
strategy pursuant to articles 17 and 18 of Directive
2014/65/EU").
3=Risk reduction order (when together with Order-
AttributeValue=Y, it signifies that the commodity
derivative order is a transation "to reduce risk in
an objectively measurable way in accordance with
Article 57 of Directive 2014/65/EU").
5=Systematic internalizer order (when together with
OrderAttributeValue=Y, it signifies that the order is
submitted by a systematic internalizer).

→OrderAttributeValue String Y2595

The value associated with the aribute type speci-
fied in OrderAttributeType.
Must be "Y".

453 NoPartyIDs Sequence N

448 →PartyID String Y

→PartyIDSource char Y447

'D'=Proprietary/custom code (marketplace assigned
member id)
'P'=Short code identifier, represented as an
unsigned 64-bit integer. Short code translation must
be reported outside protocol

9 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

→PartyRole uint32 Y452

3=ClientID
12=Executing trader
122=Investment decision maker
17=Contra Firm
27=Buyer/Seller

→PartyRoleQualifier uint32 N2376

22=Algorithm
23=Firm or legalEntity
24=Natural person

802 →NoPartySubIDs Sequence N

523 →→PartySubID String Y

→→PartySubIDType uint32 Y803

Used to indicate the counter party trader ID in
TradeCaptureReport when TradeHandlingInstr='3'.
Also used to further identify entering rm.
2=Person
3=System (trader group)

3.7.3. Order Cancel/Replace Request (G)

The Order Cancel/Replace Request (a.k.a. Order Modification
Request) is used to replace an existing order (i.e. not lled or
removed). Side or security cannot be changed in an order.

The modification is replied to with an Execution Report if suc-
cessful. Otherwise, an Order Cancel Reject message is sent.

OrderCancelReplaceRequest:

• is replied to with an ExecutionReport message, with ClOrdID
set to the value in the request message

• can be rejected with an OrderCancelReject message, with
ClOrdID set to the value in the request message and CxlRe-
jReason set to the reject reason

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to G

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the OrderCancelReplaceRequest mes-
sage

Tag Field Name Type Req

 component block <StandardHeader>

37 OrderID String N

41 OrigClOrdID String N

11 ClOrdID String Y

 component block <SecurityRef>

 component block <Order>

3.7.4. Order Cancel Request (F)

The Order Cancel Request is used to cancel an existing order.

The cancelation is replied to with an Execution Report if suc-
cessful. Otherwise, an Order Cancel Reject message is sent.

OrderCancelRequest:

• is replied to with an ExecutionReport message, with ClOrdID
set to the value in the request message

• can be rejected with an OrderCancelReject message, with
ClOrdID set to the value in the request message and CxlRe-
jReason set to the reject reason

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to F

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the OrderCancelRequest message

Tag Field Name Type Req

 component block <StandardHeader>

37 OrderID String N

41 OrigClOrdID String N

11 ClOrdID String Y

 component block <SecurityRef>

TransactTime UTCTime-
stampMicros

Y60

When this order was cancelled.

3.7.5. Execution Report (8)

If an order is (partially) lled upon hitting the order book only
one Execution Report will be sent, with execution type New and
order status (Partially) Filled. For partially lled IOC (Immediate
or cancel) and FoK (Fill or kill) orders that are executed directly,
one Execution Report will be generated with execution type
New and order status Cancelled where the eld CumQty holds
the partial ll volume.

When WorkingIndicator is set to 'N', the order operation has
been received but not yet executed. In this case any (partially)
lls are delayed until the WorkingIndicator is changed to 'Y'.
An order with WorkingIndicator set to 'N' can be modified and
deleted as normal.

In case of multiple lls of an order in a single match operation,
only one Execution Report will be sent for all partial lls. Pending
order states are not used. Also the Done for day state is never
sent for orders, since this can be concluded by observing the
security status.

In case of a canceled trade, any orders that were part of the
trade will not be restated. The trade cancel is notified only
through a Trade Capture Report message, no Execution Report
message is sent.

ExecutionReport is sent:

• unsolicited, when the order is updated, for example when it is
part of a matching operation or expires

• in reply to a NewOrderSingle message, with ClOrdID set to
the value in the request message

• to reject a NewOrderSingle message, with ExecType set to
'8' (Rejected) and ClOrdID set to the value in the request mes-
sage

10 / 34

Elasticia FIX Protocol

• in reply to an OrderCancelReplaceRequest message, with
ClOrdID set to the value in the request message

• in reply to an OrderCancelRequest message, with ClOrdID set
to the value in the request message

• in reply to an OrderMassStatusRequest message, with MassS-
tatusReqID set to the value in the request message and Exec-
Type set to 'I' (OrderStatus)

Tag Field Name Type Req

 component block <StandardHeader>

ExecID String Y17

Unique identifier of execution message, or "0" for
ExecType='I' (Order Status).

ExecType char Y150

'0'=New
'4'=Canceled
'5'=Replaced
'8'=Rejected
'C'=Expired
'F'=Trade (partial ll or ll)
'I'=Order Status

 component block <SecurityRef>

 component block <Order>

37 OrderID String Y

MDEntryID String N278

Reference to the MDEntryID of this order in the mar-
ket data.

ClOrdID String N11

Conditionally required when this message is a
response to a submitted order.

OrigClOrdID String N41

Conditionally required when not unsolicited and
ExecType is '4' (Canceled) or '5' (Replaced).

OrdStatus char Y39

'0'=New
'1'=Partially lled
'2'=Filled
'4'=Canceled
'8'=Rejected
'C'=Expired
'3'=Done for day

WorkingIndicator char N636

Indicates if the order is currently being worked.
Applicable for OrdStatus = "New" and OrdStatus =
"Partially lled". Absence means 'Y'.
'Y'=Order is currently being worked.
'N'=Order has been accepted but not yet in a work-
ing state.

151 LeavesQty decimal Y

14 CumQty decimal Y

LotType char N1093

Denes the lot type assigned to the order.
'1'=Odd Lot
'2'=Round Lot

6 AvgPx decimal N

Tag Field Name Type Req

Average traded price.

OrdRejReason uint32 N103

Code to identify reason for order rejection.
1=Unknown symbol
2=Exchange closed
5=Unknown order
6=Duplicate Order (e.g. dupe ClOrdID)
18=Invalid price increment
99=Other
100=Orders not allowed in knockout state
101=Buy orders not allowed in knockout buyback
state
103=Buy orders not allowed in buyback state
104=Sell orders not allowed in distribution state
107=Order breached pre trade control price limit
108=Order breached pre trade control value limit
109=Value less than reserve order minimum value.
110=Reserve order not allowed.
111=Order breached pre trade control volume limit

ExecRestatementReason uint32 N378

Reason for an Execution Report message sent when
communicating an unsolicited cancel.
0=GT corporate action
12=Cancel on connection loss
100=Book cleared
101=Volatility guard
102=Cancel because of changed trading rules
99=Other

OrderPriority uint64 N20028

Indicates the priority of the order in the orderbook
in comparison to other orders on the same level.
Higher value means lower priority. Custom eld.

OrderCapacity char N528

Designates the capacity of the rm placing the
order.
'P'=Principal (Deal)
'R'=Riskless principal (Matched)
'A'=Agency (Any other capacity)

OrderOrigination uint32 N1724

Identifies the origin of the order. Absence means
non DEA.
5=Order received from a direct access or sponsored
access customer

2593 NoOrderAttributes Sequence N

→OrderAttributeType uint32 Y2594

2=Liquidity provision activity order (when together
with OrderAttributeValue=Y, it signifies that the
order was submitted "as part of market making
strategy pursuant to articles 17 and 18 of Directive
2014/65/EU").
3=Risk reduction order (when together with Order-
AttributeValue=Y, it signifies that the commodity
derivative order is a transation "to reduce risk in
an objectively measurable way in accordance with
Article 57 of Directive 2014/65/EU").
5=Systematic internalizer order (when together with
OrderAttributeValue=Y, it signifies that the order is
submitted by a systematic internalizer).

2595 →OrderAttributeValue String Y

11 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

The value associated with the aribute type speci-
fied in OrderAttributeType.
Must be "Y".

453 NoPartyIDs Sequence N

448 →PartyID String Y

→PartyIDSource char Y447

'D'=Proprietary/custom code (marketplace assigned
member id)
'P'=Short code identifier, represented as an
unsigned 64-bit integer. Short code translation must
be reported outside protocol

→PartyRole uint32 Y452

3=ClientID
12=Executing trader
122=Investment decision maker
17=Contra Firm
27=Buyer/Seller

→PartyRoleQualifier uint32 N2376

22=Algorithm
23=Firm or legalEntity
24=Natural person

802 →NoPartySubIDs Sequence N

523 →→PartySubID String Y

→→PartySubIDType uint32 Y803

Used to indicate the counter party trader ID in
TradeCaptureReport when TradeHandlingInstr='3'.
Also used to further identify entering rm.
2=Person
3=System (trader group)

MassStatusReqID String N584

Value assigned by issuer of Mass Status Request to
uniquely identify the request.

LastRptRequested char N912

Indicates that this is the last Execution Report which
will be returned as a result of the request.
'N'=Not Last Message
'Y'=Last Message

Text String N58

Error message.

3.7.6. Order Cancel Reject (9)

This message is sent in response to Order Cancel (Replace)
Request in case of an error.

OrderCancelReject is sent:

• to reject an OrderCancelRequest message, with ClOrdID set
to the value in the request message and CxlRejReason set to
the reject reason

• to reject an OrderCancelReplaceRequest message, with
ClOrdID set to the value in the request message and CxlRe-
jReason set to the reject reason

Tag Field Name Type Req

 component block <StandardHeader>

Tag Field Name Type Req

OrderID String Y37

If CxlRejReason=Unknown Order, value is "[N/A]".

OrigClOrdID String Y41

ClOrdId of the order that could not be can-
celed/replaced.

ClOrdID String Y11

Same as in the request.

OrdStatus char Y39

If CxlRejReason=Unknown Order, value is '8'.
'0'=New
'1'=Partially lled
'2'=Filled
'4'=Canceled
'8'=Rejected
'C'=Expired
'3'=Done for day

CxlRejResponseTo char Y434

Identifies type of message this reject is in response
to.
'1'=Order cancel request
'2'=Order cancel/replace request

CxlRejReason uint32 N102

1=Unknown order
6=Duplicate ClOrdID (11) received
18=Invalid price increment
99=Other
100=Orders not allowed in knockout state
101=Buy orders not allowed in knockout buyback
state
103=Buy orders not allowed in buyback state
104=Sell orders not allowed in distribution state
107=Order breached pre trade control price limit
108=Order breached pre trade control value limit
109=Value less than reserve order minimum value.
110=Reserve order not allowed.
111=Order breached pre trade control volume limit

Text String N58

Error message.

3.7.7. Order Mass Status Request (AF)

Status for all orders owned by the requester’s trader group can
be requested with the Order Mass Status Request message
where MassStatusReqType is set to 7 (Status for all orders). This
message will be replied to with one or more Execution Report
messages with ExecType set to 'I' (Order Status). The last Exe-
cution Report will always be indicated with LastRptRequested
eld set to 'Y'. Note that a dummy Execution Report OrderID set
to "[N/A]" and LastRptRequested eld set to 'Y' may be sent as
last message to indicate the request has been processed (for
example as a reply with no orders).

In the event of a malformed request, the response will be a Busi-
ness Message Reject message.

OrderMassStatusRequest:

• is replied to with an ExecutionReport message, with MassSta-
tusReqID set to the value in the request message and Exec-
Type set to 'I' (OrderStatus)

12 / 34

Elasticia FIX Protocol

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to AF

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the OrderMassStatusRequest message

Tag Field Name Type Req

 component block <StandardHeader>

584 MassStatusReqID String Y

MassStatusReqType uint32 Y585

7=Status for all orders

3.8. Quote Messages

A quote can be identified in a number of ways:

QuoteMsgID Client assigned identifier
(mandatory). It must be
unique within a security and
trader group. This identifier
must change each time the
client updates the quote and
thus denotes a revision of the
quote.

QuoteID Market place assigned iden-
tifier which does not change
during the lifetime of the
quote.

BidMDEntryID and Offer-
MDEntryID

Reference to the current
MDEntryID in the market data
which identifies the bid/oer.
This identifier is only present
for quotes that are visible in
the market data and it may
change whenever the quote
is seen as a new bid/oer in
the market data (e.g. price
changes).

Either OrigQuoteMsgID or QuoteID is required for quote mod-
ification and deletion. Usage of OrigQuoteMsgID allows for
chaining of quote operations.

All quotes are tradeable, meaning that they are matched
against other orders and quotes in the order book.

Zero spread (same bid and oer prices) quotes are supported
and will not result in a trade between the sides of the same
quote. Crossing prices are however not supported.

Single side quotes are supported by leaving the opposite price
eld absent (null), e.g. if BidPx is present while OerPx then the
quote only have a buy side.

The Quote and Quote Status Report messages have been
extended with TotalBidSize and TotalOfferSize. The Total-
BidSize is the total (original) bid volume while BidSize is the avail-
able bid volume. This means that TotalBidSize = BidSize + cumu-
lative traded bid volume (including any canceled trades). The
volume in quotes are updated using TotalBidSize and TotalOf-
ferSize to avoid the risk of over-lls, or alternatively using
BidSize and OfferSize.

In case of a (partial) ll of a quote a Quote Status Report is sent
with an updated available volume. No ExecutionReport is sent
for a quote ll. However, a Trade Capture Report is always sent
for any trades that occur. A completely lled quote is deleted.

All quotes are automatically deleted when the trading session
ends (SecurityTradingStatus is post open).

During financial status sub-state Buyback the exchange
accepts double-sided quotes from the market maker, however
the sell side of the quote is cleared. This is reected in the Quote
Status Report where available volume (OfferSize) of the sell side
will be set to zero, as in a ll of that side.

3.8.1. Quote Grp Component Block

This component block denes a quote.

Tag Field Name Type Req

BidPx decimal N132

Bid price. Either BidPx, OerPx or both must be
specified.

OerPx decimal N133

Oer price. Either BidPx, OerPx or both must be
specified.

BidSize decimal N134

Specifies the open bid size. Specifies the available
bid size.

TotalBidSize decimal N1749

Specifies the total bid size.

OfferSize decimal N135

Specifies the available ask size.

TotalOfferSize decimal N1750

Specifies the total ask size.

TransactTime UTCTime-
stampMicros

N60

When this quote was created, updated or cancelled.

Account String N1

Account information that will be echoed back.

QuoteType uint32 N537

Identifies the type of quote. Absence means
restriced tradeable. Valid values:
1=Tradeable.
4=Initially tradeable (quote validation).

OrderRestrictions MultipleChar-
Value

N529

Restrictions associated with an order.
'B'=Issuer Holding
'C'=Issue Price Stabilization

453 NoPartyIDs Sequence N

448 →PartyID String Y

→PartyIDSource char Y447

'D'=Proprietary/custom code (marketplace assigned
member id)
'P'=Short code identifier, represented as an
unsigned 64-bit integer. Short code translation must
be reported outside protocol

13 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

→PartyRole uint32 Y452

3=ClientID
12=Executing trader
122=Investment decision maker
17=Contra Firm
27=Buyer/Seller

→PartyRoleQualifier uint32 N2376

22=Algorithm
23=Firm or legalEntity
24=Natural person

802 →NoPartySubIDs Sequence N

523 →→PartySubID String Y

→→PartySubIDType uint32 Y803

Used to indicate the counter party trader ID in
TradeCaptureReport when TradeHandlingInstr='3'.
Also used to further identify entering rm.
2=Person
3=System (trader group)

3.8.2. Quote (S)
The Quote message is used for sending new quotes, updating
previous quotes and replying to quote requests.

Quote:

• is replied to with a QuoteStatusReport message, with
QuoteMsgID set to the value in the request message

• can be rejected with a QuoteStatusReport message, with
QuoteMsgID set to the value in the request message and
QuoteStatus set to 5 (Rejected)

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to S

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the Quote message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

131 QuoteReqID String N

QuoteID String N117

Quote identifier assigned by the exchange.

QuoteMsgID String Y1166

Unique client-assigned identifier for the (replace-
ment) quote.

OrigQuoteMsgID String N20018

Reference to previous QuoteMsgID in case of modi-
fication. Custom eld.

 component block <QuoteGrp>

3.8.3. Quote Status Report (AI)
The Quote Status Report message is used for replying to quote
operations and for sending unsolicited updates of the available
volume in case a quote is (partially) lled.

QuoteStatusReport is sent:

• unsolicited, when the quote is updated, for example when it
is part of a matching operation or expires

• in reply to a Quote message, with QuoteMsgID set to the
value in the request message

• to reject a Quote message, with QuoteMsgID set to the value
in the request message and QuoteStatus set to 5 (Rejected)

• in reply to a QuoteCancel message, with QuoteStatus set to
4 (CanceledAll) or 17 (Canceled) and QuoteMsgID set to the
value in the request message

• to reject a QuoteCancel message, with QuoteStatus set to
5 (Rejected) and QuoteMsgID set to the value in the request
message

• in reply to a QuoteStatusRequest message, with QuoteStatus
set to 8 (Query) and QuoteStatusReqID set to the value in the
request message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

QuoteID String N117

Quote identifier.

QuoteMsgID String N1166

Maps to QuoteMsgID of a single Quote.

OrigQuoteMsgID String N20018

Maps to OrigQuoteMsgID of a single Quote. Custom
eld.

649 QuoteStatusReqID String N

QuoteStatus uint32 Y297

The status of the Quote Status Report.
0=Accepted
4=Canceled All
5=Rejected
7=Expired
8=Query
17=Canceled
21=Traded
22=Traded and removed (both sides)

QuoteRejectReason uint32 N300

Reason quote was rejected.
1=Unknown Symbol (security)
2=Exchange (Security) closed
5=Unknown Quote
6=Duplicate Quote
7=Invalid bid/ask spread
8=Invalid price
11=Quote Locked - Unable to Update/Cancel (Miss-
ing QuoteReqID)
99=Other
100=Not authorized to quote security with Quote
Validation
101=Duplicate quote with Quote Validation
102=Quotes not allowed in knockout state
103=Not authorized to quote security in knockout
buyback state
104=Sell quotes not allowed in knockout buyback
state

14 / 34

Elasticia FIX Protocol

Tag Field Name Type Req
105=Not authorized to quote security in distribution
state
106=Buy quotes not allowed in distribution state
107=Not authorized to quote security in buyback
state
108=Sell quotes not allowed in buyback state
109=Quote breached pre trade control price limit
110=Quote breached pre trade control value limit
111=Quote breached pre trade control volume limit
112=Quote for this specific instrument and/or mem-
ber is blocked by a killswitch

ExecRestatementReason uint32 N378

Reason for a Quote Status Report sent when com-
municating an unsolicited cancel. Field added.
0=GT corporate action
12=Cancel on connection loss
100=Book cleared
101=Volatility guard
102=Cancel because of changed trading rules
99=Other

WorkingIndicator char N636

Indicates if the quote is currently being worked.
Applicable when QuoteType is not 4. Absence
means 'Y'. Field added.
'Y'=Order is currently being worked.
'N'=Order has been accepted but not yet in a work-
ing state.

BidMDEntryID String N1745

The MDEntryID of the bid side in the market data.

OfferMDEntryID String N1746

The MDEntryID of the oer side in the market data.

BidPriority uint64 N20029

Indicates the priority of the bid in the orderbook in
comparison to other orders and quotes on the same
level. Higher value means lower priority. Custom
eld.

OfferPriority uint64 N20030

Indicates the priority of the oer in the orderbook
in comparison to other orders and quotes on the
same level. Higher value means lower priority. Cus-
tom eld.

 component block <QuoteGrp>

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request. Field added.
'N'=Not Last Message
'Y'=Last Message

Text String N58

Error message.

3.8.4. Quote Cancel (Z)

The Quote Cancel message is used for canceling a single quote,
all quotes for a single security or all quotes.

QuoteCancel:

• is replied to with a QuoteStatusReport message, with QuoteS-
tatus set to 4 (CanceledAll) or 17 (Canceled) and QuoteMsgID
set to the value in the request message

• can be rejected with a QuoteStatusReport message, with
QuoteStatus set to 5 (Rejected) and QuoteMsgID set to the
value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to Z

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the QuoteCancel message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

131 QuoteReqID String N

QuoteID String N117

Quote identifier assigned by the exchange.

QuoteMsgID String Y1166

Unique client-assigned identifier for the request.

OrigQuoteMsgID String N20018

Reference to previous QuoteMsgID. Custom eld.

QuoteCancelType uint32 Y298

Identifies the type of quote cancel.
1=Cancel for a security
4=Cancel all quotes
5=Cancel quote specified in QuoteID or
OrigQuoteMsgID

TransactTime UTCTime-
stampMicros

N60

When this quote was cancelled.

3.8.5. Quote Request (R)

The Quote Request message is used by the market place to
request an updated quote, when the quote validation mecha-
nism is enabled. The request identifies a single quote that need
to be updated. The market maker should respond with a Quote
message, with updated values or confirming previous values,
or with a Quote Cancel message. If the market maker does
not respond within a pre-dened timeout the quote will be can-
celed.

QuoteRequest is sent:

• unsolicited, when the quote would be part of a matching
operation and an update (or cancellation) of the quote is
required, or when a new quote is requested for quote on
demand.

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

QuoteReqID String Y131

Unique identifier for quote request.

117 QuoteID String N

15 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

Quote identifier.

QuoteMsgID String N1166

Unique client-assigned identifier

Side char N54

This is from the perspective of the initiator. Applica-
ble for quote on demand (QOD).
'1'=buy
'2'=sell

OrderQty decimal N38

Applicable for quote on demand (QOD).

3.8.6. Quote Status Request (a)

A snapshot of all quotes can be requested using the Quote
Status Request message. The response is one or more Quote
Status Report messages with QuoteStatus = 8 (query). The last
response has the LastRptRequested eld set to 'Y'. Note that if
there are no quotes available, a dummy quote with no Securi-
tyID set (null) will be sent as the last and only message.

QuoteStatusRequest:

• is replied to with a QuoteStatusReport message, with QuoteS-
tatus set to 8 (Query) and QuoteStatusReqID set to the value
in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to a

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the QuoteStatusRequest message

Tag Field Name Type Req

 component block <StandardHeader>

649 QuoteStatusReqID String N

SubscriptionRequestType char Y263

'0'=Snapshot

3.9. Trade Messages

Both automatic matching of orders/quotes and manual trades
are conveyed using the Trade Capture Report message.

For manual trade reporting, one-party report for pass-through
to counterparty (figure One-party report), is the only accepted
trading model for non-internal trades. For internal trades, where
the counterparty is the same as the reporting party, the two-
party report trading model (figure Two-party report) is also
accepted. Providers may also use the two-party report trad-
ing model, for trades between trader groups for which they are
allowed to act on behalf of.

Note

A party that has the right to see trade details of both
sides, e.g. internal trades, will only receive a single
Trade Capture Report with both sides.

In the one-party for pass-through model the initiator can cancel
the trade as long as it is not confirmed by the counterparty.

Figure 3. Privately negotiated trade, one-party report for pass-
through to counterparty.

1. Request
Reporting

Party

3. AckCounterparty
2. Request

4. Conrm

4. Conrm

4. Conrm
Marketplace Market Data,

etc.

Figure 4. Privately negotiated trade, two-party report.

1. Request
Reporting

Party

Counterparty

2. Conrm

2. Conrm

2. Conrm
Marketplace Market Data,

etc.

The counterparty is referenced by the marketplace assigned
member code in PartyID and optionally by the trader group
in PartySubID (PartySubIDType = System). The trader group is
required for manual trade reports sent to the exchange. In addi-
tion, for manual trades, traders can specify a trader id (free text)
in PartySubID (PartySubIDType = Person) for both the own side
and the counterparty.

In general the following trade messages are sent from the mar-
ket place.

New automatically
matched trade from
marketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Con-
firm ('0')
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Armed ('0')

Cancel trade from mar-
ketplace.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Trade Report
Cancel (6)
TradeHandlingInstr = Trade Con-
firm ('0')
TradeReportID=<new>
TradeReportRefID=<market-
place’s>
TradeID=<reference>
MatchStatus = Armed ('0')

3.9.1. One-Party Report for Pass-Thru

In the one-party report for pass-thru model the marketplace
will respond each Trade Capture Report with a Trade Capture
Report Ack. The messages are lled in as follows in each step
of this model.

Initiator submit to mar-
ketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportID=<new>

16 / 34

Elasticia FIX Protocol

Ack from marketplace
of initiator submit.

Trade Capture Report Ack
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportID=<initiator’s>

Marketplace forward of
submit to counterparty.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Alleged (1)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportID=<new>
MatchStatus = Unaffirmed ('1')

Inititator cancel to mar-
ketplace, before coun-
terparty has accepted/
declined.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<initiator’s pre-
vious>
TradeReportID=<new>

Ack from marketplace
of inititator cancel.

Trade Capture Report Ack
TradeReportTransType = Cancel
(0)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<initiator’s>
TradeReportID=<initiator’s>

Marketplace forward of
cancel to counterparty.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Alleged (1)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<market-
place’s>
TradeReportID=<new>
MatchStatus = Unaffirmed ('1')

Counterparty accept/
decline to marketplace.

Trade Capture Report
TradeReportTransType = Replace
(2)
TradeReportType = Accept (2) or
Decline (3)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<market-
place’s>
TradeReportID=<new>

Ack from market-
place of counterparty
accept/decline.

Trade Capture Report Ack
TradeReportTransType = Replace
(2)
TradeReportType = Accept (2) or
Decline (3)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<market-
place’s>
TradeReportID=<counterparty’s>

Marketplace forward of
decline to initiator.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Decline (3)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<initiator’s>
TradeReportID=<new>
MatchStatus = Unaffirmed ('1')

Marketplace confirm
trade to initiator/coun-
terparty.

Trade Capture Report
TradeReportTransType = Replace
(2)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Con-
firm ('0')
TradeReportRefID=<initiator’s> or
<counterparty’s>
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Armed ('0')

Reject from market-
place in response a
malformed Trade Cap-
ture Report.

Trade Capture Report Ack
TradeReportTransType = <same>
TradeReportType = <same>
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<same>
TradeReportID=<same>
TradeReportRejectReason=<speci-
fied>

Cancel from market-
place (due to timeout
or cleanup) to initia-
tor/counterparty.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Alleged (1)
TradeHandlingInstr = One-Party
Report for Pass-Thru ('3')
TradeReportRefID=<initiator’s> or
<marketplace’s>
TradeReportID=<new>
MatchStatus = Unaffirmed ('1')

3.9.2. Two-Party Report
In the two-party report model no Trade Capture Report Ack
message is sent in response to a successful request. Instead the
confirmed trade is sent directly. The elds are used in the fol-
lowing way in this model.

Initiator submit to mar-
ketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Two-Party
Report ('1')
TradeReportID=<new>

Marketplace confirm
trade to initiator.

Trade Capture Report
TradeReportTransType = Replace
(2)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Con-
firm ('0')
TradeReportRefID=<initiator’s>
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Armed ('0')

17 / 34

Elasticia FIX Protocol

Marketplace confirm
trade to counterparty
(if other than initiator).

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Con-
firm ('0')
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Armed ('0')

Reject from market-
place in response a
malformed Trade Cap-
ture Report.

Trade Capture Report Ack
TradeReportTransType = <same>
TradeReportType = <same>
TradeHandlingInstr = Two-Party
Report ('1')
TradeReportRefID=<same>
TradeReportID=<same>
TradeReportRejectReason=<speci-
fied>

3.9.3. Trade Component Block
This component block is used to dene a trade.

Tag Field Name Type Req

TradeID String N1003

Assigned by the marketplace.

TradeReportTransType uint32 N487

Transaction type.
0=New
1=Cancel
2=Replace
3=Release
4=Reverse
5=Cancel Due To Back Out of Trade

TradeReportType uint32 N856

0=Submit
1=Alleged
2=Accept
3=Decline
6=Trade Report Cancel

TrdType uint32 N828

0=Regular Trade
52=Exchange Granted Trade

SecondaryTrdType uint32 N855

Absence means '0'. Applies only to manual trades.
MiFID II regulatory eld.
0=Regular Trade.
64=Benchmark Trade.

TrdPriceCondition uint32 N1839

Applies only to manual trades. MiFID II regulatory
eld.
13=Special dividend Trade.
15=Non-price forming Trade.
16=Trade not contributing to the price discovery
process

OrderCategory char N1115

Applies only to manual trades. MiFID II regulatory
eld.
'3'=Privately Negotiated Trade

2668 NoTrdRegPublications Sequence N

Tag Field Name Type Req

Applies only to manual trades. MiFID II regulatory
eld.

→TrdRegPublicationType uint32 N2669

0=Pre-trade transparency waiver

→TrdRegPublReason uint32 N2670

0=No preceding order in book as transaction price
set within average spread of a liquid instrument.
ESMA RTS "NLIQ".
1=No preceding order in book as transaction price
depends on system-set reference price for an illiquid
instrument. ESMA RTS "OILQ".
2=No preceding order in book as transaction price
is for transaction subject to conditions other than
current market price. ESMA RTS "PRIC".

TradeHandlingInstr char N1123

'0'=Trade Confirmation
'1'=Two-Party Report
'3'=One-Party Report for Pass Through

LastQty decimal N32

Trade quantity of this (last) ll.

LastPx decimal N31

Trade price of this (last) ll.

Currency String N15

ISO 4217 currency code for the trade. Only used out-
bound, ignored inbound.

LastMkt String N30

Market of execution for last ll. ISO 10383 (MIC).
Only used outbound, ignored inbound

TransactTime UTCTime-
stampMicros

N60

When this transaction occured. Execution time of
trade or cancellation.

TransBkdTime UTCTime-
stampMicros

N483

When this trade was booked, if other than Transact-
Time. Used for manual trade reports and for trade
cancellations. Field added.

MatchStatus char N573

The status of this trade with respect to matching or
comparison.
'0'=Compared, matched or armed
'1'=Uncompared, unmatched, or unaffirmed

MatchType char N574

'1'=One-Party Trade Report (privately negotiated
trade)
'2'=Two-Party Trade Report (privately negotiated
trade)
'4'=Auto-match
'7'=Call Auction
'x'=Manually Matched Trade Report

TradeCondition MultipleString-
Value

N277

Trade conditions set by exchange. Field added.
"I"=Sold Last (late reporting)
"AV"=Outside Spread

18 / 34

Elasticia FIX Protocol

Tag Field Name Type Req
"X0"=Outside Spread Unknown
"XB"=Knockout buyback Trade
"XS"=Buyback Trade
"XD"=Distribution Trade
"XAO"=Opening auction Trade
"XAC"=Closing auction Trade
"XAD"=Volatility guard dynamic auction Trade
"XAS"=Volatility guard static auction Trade
"XAP"=Order protection auction Trade
"XAR"=Missing reference price auction trade
"XLI"=Large In Scale trade
"0"=Cancel (only used in snapshot)
"6"=Benchmark trade. MiFID II regulatory eld
"XQ"=Quote on demand trade.

552 NoSides Sequence N

→Side char Y54

'1'=buy
'2'=sell

37 →OrderID String N

→OrderPriority uint64 N20028

Indicates the priority of the order in the orderbook
in comparison to other orders on the same level.
Higher value means lower priority. Custom eld.

→ClOrdID String N11

Client assigned order id in case of an order. In the
case of quotes mapped to QuoteMsgID of a single
Quote.

→SecondaryClOrdID String N526

In the case of quotes mapped to QuoteID of a single
Quote.

→Account String N1

Account as specified in the order or Trade Capture
Request.

→LotType char N1093

Denes the lot type assigned to the order.
'1'=Odd Lot
'2'=Round Lot

→AggressorIndicator char N1057

Used to identify whether the order initiator is an
aggressor or not in the trade. Boolean.
'Y'=Order initiator is aggressor
'N'=Order initiator is passive

→OrderCapacity char N528

Designates the capacity of the rm placing the
order. Absence means 'R' for trades reported to the
exchange.
'P'=Principal (Deal)
'R'=Riskless principal (Matched)
'A'=Agency (Any other capacity)

→OrderRestrictions MultipleChar-
Value

N529

Restrictions associated with an order.
'B'=Issuer Holding
'C'=Issue Price Stabilization

159 →AccruedInterestAmt decimal N

Tag Field Name Type Req

Amount of accrued interest the buyer compensates
the seller. Applicable for bonds and xed income.

→OrderOrigination uint32 N1724

Identifies the origin of the order. Absence means
non DEA.
5=Order received from a direct access or sponsored
access customer

453 →NoPartyIDs Sequence N

448 →→PartyID String Y

→→PartyIDSource char Y447

'D'=Proprietary/custom code (marketplace assigned
member id)
'P'=Short code identifier, represented as an
unsigned 64-bit integer. Short code translation must
be reported outside protocol

→→PartyRole uint32 Y452

3=ClientID
12=Executing trader
122=Investment decision maker
17=Contra Firm
27=Buyer/Seller

→→PartyRoleQualifier uint32 N2376

22=Algorithm
23=Firm or legalEntity
24=Natural person

802 →→NoPartySubIDs Sequence N

523 →→→PartySubID String Y

→→→PartySubIDType uint32 Y803

Used to indicate the counter party trader ID in
TradeCaptureReport when TradeHandlingInstr='3'.
Also used to further identify entering rm.
2=Person
3=System (trader group)

2593 →NoOrderAttributes Sequence N

→→OrderAttributeType uint32 Y2594

2=Liquidity provision activity order (when together
with OrderAttributeValue=Y, it signifies that the
order was submitted "as part of market making
strategy pursuant to articles 17 and 18 of Directive
2014/65/EU").
3=Risk reduction order (when together with Order-
AttributeValue=Y, it signifies that the commodity
derivative order is a transation "to reduce risk in
an objectively measurable way in accordance with
Article 57 of Directive 2014/65/EU").
5=Systematic internalizer order (when together with
OrderAttributeValue=Y, it signifies that the order is
submitted by a systematic internalizer).

→→OrderAttributeValue String Y2595

The value associated with the aribute type speci-
fied in OrderAttributeType.
Must be "Y".

3.9.4. Trade Capture Report (AE)

The Trade Capture Report message is used by the exchange to
send confirmed trades. It is also used in manual trade reporting.

19 / 34

Elasticia FIX Protocol

TradeCaptureReport:

• is replied to with a TradeCaptureReport message, with
TradeReportRefID set to the value in the request message

• is replied to with a TradeCaptureReportAck message, with
TradeReportRejectReason set to 0 (Successful) and TradeRe-
portID set to the value in the request message

• can be rejected with a TradeCaptureReportAck message,
with TradeReportRejectReason set to the reject reason and
TradeReportID set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to AE

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the TradeCaptureReport message

TradeCaptureReport is sent:

• unsolicited, when a trade occurs

• in reply to a TradeCaptureReport message, with TradeRe-
portRefID set to the value in the request message

• in reply to a TradeCaptureReportRequest message, with
TradeRequestID set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

TradeReportID String N571

Assigned by the submitter of the message and used
as a pure message identifier.

TradeReportRefID String N572

The TradeReportID that is being referenced for
some action, such as correction or cancelation.

TradeRequestID String N568

Request ID if this message is in response to a Trade
Capture Report Request.

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request.
'N'=Not Last Message
'Y'=Last Message

 component block <SecurityRef>

454 NoSecurityAltID Sequence N

→SecurityAltID String Y455

Alternative security identifier of type specified in
SecurityAltIDSource.

→SecurityAltIDSource char Y456

Identifies the class of SecurityID.
'M'=Marketplace-assigned identifier
'4'=ISIN
'8'=Exchange Symbol
'D'=Valoren

 component block <Trade>

3.9.5. Trade Capture Report Ack (AR)

The Trade Capture Report Ack message is used for rejects. It is
also used to acknowledge receival of trade capture reports in
the following cases:

• Initiator’s trade capture report (both new and cancel) for a
one-party report for pass through.

• Counterparty’s decline of a one-party report for pass
through.

In other cases the confirmed trade capture report can be seen
as an acknowledgement. This means that the Trade Capture
Report will always be directly replied to with a message.

TradeCaptureReportAck is sent:

• in reply to a TradeCaptureReport message, with TradeRe-
portRejectReason set to 0 (Successful) and TradeReportID set
to the value in the request message

• to reject a TradeCaptureReport message, with TradeRe-
portRejectReason set to the reject reason and TradeReportID
set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

TradeReportID String N571

Assigned by the submitter of the message and used
as a pure message identifier.

TradeReportRefID String N572

The TradeReportID that is being referenced for
some action, such as correction or cancelation.

TradeRequestID String N568

Request ID if this message is in response to a Trade
Capture Report Request.

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request.
'N'=Not Last Message
'Y'=Last Message

TradeReportRejectRea-
son

uint32 N751

0=Successful (default)
1=Invalid party information
2=Unknown instrument
3=Unauthorized to report trades
4=Invalid trade type
5=Manual trades are not allowed for this instrument
6=Manual trades that add to DVC limits not allowed
for this instrument.
7=Trade for this specific instrument and/or member
is blocked by a killswitch.
99=Other
100=Manual trades not allowed in any knockout
state
101=Duplicate TradeReportID

 component block <SecurityRef>

 component block <Trade>

Text String N58

Error message.

20 / 34

Elasticia FIX Protocol

3.9.6. Trade Capture Report Request (AD)
All trade capture reports involving the requester’s trader group
can be requested with the Trade Capture Report Request mes-
sage with TradeRequestType set to 0 (All Trades). At least the
trades for the last 72 hours are available. The time interval
can be narrowed further by setting TradeRequestType to 1 and
specifying the time interval in the Dates sequence. This mes-
sage will be replied to with one or more Trade Capture Report
messages. The last Trade Capture Report will be indicated with
LastRptRequested eld set to 'Y'. Note that a dummy Trade
Capture Report with TradeID set to "[N/A]" and LastRptRe-
quested eld set to 'Y' may be sent as last message to indicate
the request has been processed (for example as a response with
no trades).

In the event of a malformed request, the response will be a
Trade Capture Report Request Ack message.

TradeCaptureReportRequest:

• is replied to with a TradeCaptureReport message, with
TradeRequestID set to the value in the request message

• is replied to with a TradeCaptureReportRequestAck mes-
sage, with TradeRequestResult set to 0 (Successful) and
TradeRequestID set to the value in the request message

• can be rejected with a TradeCaptureReportRequestAck mes-
sage, with TradeRequestResult set to the reject reason and
TradeRequestID set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to AD

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the TradeCaptureReportRequest mes-
sage

Tag Field Name Type Req

 component block <StandardHeader>

TradeRequestID String Y568

Identifier for the trade request.

TradeRequestType uint32 Y569

0=All trades (last e.g. 72 hours)
1=Matched trades matching criteria provided on
request

NoDates Sequence N580

Range of dates. Since (NoDates=1) or Between
(NoDates=2) dates, inclusive.

→TransactTime UTCTime-
stampMicros

Y60

When the trade was created.

3.9.7. Trade Capture Report Request Ack (AQ)
This message is only sent as a reject to a Trade Capture Report
Request.

TradeCaptureReportRequestAck is sent:

• in reply to a TradeCaptureReportRequest message, with
TradeRequestResult set to 0 (Successful) and TradeRequestID
set to the value in the request message

• to reject a TradeCaptureReportRequest message, with
TradeRequestResult set to the reject reason and
TradeRequestID set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

TradeRequestID String Y568

Identifier for the trade request.

TradeRequestType uint32 Y569

0=All trades (last e.g. 72 hours)
1=Matched trades matching criteria provided on
request

TradeRequestResult uint32 Y749

Result of Trade Request.
0=Successful (default)
1=Invalid or unknown instrument
2=Invalid type of trade requested
3=Invalid parties
4=Invalid transport type requested
5=Invalid destination requested
8=TradeRequestType not supported
9=Not authorized
99=Other

TradeRequestStatus uint32 Y750

Status of Trade Request.
0=Accepted
1=Completed
2=Rejected

Text String N58

Error message.

3.10. Financial Status Messages

3.10.1. User Security Status Update Request
(FU)
The User Security Status Update Request message allows a
member with sufficient rights to change the financial status of
a specific instrument. If the request is accepted, the new finan-
cial status will be published by a Security Status message on the
market data service.

A request to knock the instrument will be replied with the sta-
tus being changed to Knock out or Knock out buyback. The lat-
ter will be replied if the instrument is registered as a Buy Back
instrument.

UserSecurityStatusUpdateRequest:

• is replied to with an UserSecurityStatusUpdateResponse mes-
sage, with SecurityStatusUpdateRequestID set to the value in
the request message

• can be rejected with an UserSecurityStatusUpdateResponse
message, with FinancialStatusResult set to the reject reason
and SecurityStatusUpdateRequestID set to the value in the
request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to FU

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the

21 / 34

Elasticia FIX Protocol

sequence number of the UserSecurityStatusUpdateRequest
message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

20040 SecurityStatusUp-
dateRequestID

String Y

20049 NoUpdates Sequence N

→FinancialStatusUpdate-
Type

uint32 Y20038

Financial status type.
1=Knock instrument (will result in knockout or knock-
out buyback)
3=Buyback
4=Distribution
6=Recalculated

→FinancialStatusUpdate-
Value

uint32 Y20050

Financial status operation.
1=Enable
2=Clear

3.10.2. User Security Status Update Response
(FR)

UserSecurityStatusUpdateResponse is sent:

• in reply to an UserSecurityStatusUpdateRequest message,
with SecurityStatusUpdateRequestID set to the value in the
request message

• to reject an UserSecurityStatusUpdateRequest message,
with FinancialStatusResult set to 1 (UnknownSecurityId), 2
(InvalidFinancialStatus), 3 (InsufficientRigths) or 4 (Other)
and SecurityStatusUpdateRequestID set to the value in the
request message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

20040 SecurityStatusUp-
dateRequestID

String Y

FinancialStatusResult uint32 Y20042

Financial status update result.
0=Success
1=Unknown Security ID
2=Unsupported financial operation
3=User does not have sufficient rights to update
financial status
4=Other error

Text String N58

Message to explain reason in case of rejection

3.11. Quote Validation

The quote validation mechanism can be enabled for one mar-
ket maker at a time for a security. Only one quote with quote
validation is allowed per security at any given time, and is used
by setting QuoteType to 4 (Initially Tradable).

When the security is in continuous trading (open), and an order
is entered for a security with the quote validation mechanism
enabled, one of the following actions is taken:

1. If the order would result in a match (trade) with a quote from
the market maker. → Put the order in a queue.

2. If there already are other orders in the queue. → Put the order
in a queue (regardless if it would match the quote with quote
validation).

3. Otherwise. → Same as without quote validation, i.e. match
the order against any other orders in the order book and put
the remaining volume in the order book of the security.

Orders that are placed in the queue are accepted but not exe-
cuted nor visible in the market data. This is reected in the Exe-
cution Report by having WorkingIndicator set to N (Not Yet In
Working State). Orders that are deleted are removed from the
queue immediately. An order in the queue that is modified will
be moved to the end of the queue if the modification would
cause the order to lose priority, otherwise the order will keep its
place in the queue.

Immediately when an order is inserted into an empty queue a
Quote Request message is sent to the market maker, indicating
that a trade is imminent. Notice that no information about the
order (price, type or volume) is given to the market maker. The
market maker must reply to the Quote Request as fast as possi-
ble, within a specified time period (default 600 ms). If no answer
arrives within this period the quote is removed from the order
book.

The quote update is matched against the order book before
the queue, this is because the update is modelled as occurring
exactly before the rst order was placed in the queue.

If the quote is removed, then all order operations in the queue
are simply executed.

A quote update that is not a direct response to a Quote Request
while awaiting a response, will be rejected. This way a market
maker cannot accidentally accept a Quote Request. Once the
reply is received or the timeout has been reached, spontaneous
quote updates will be accepted again.

3.12. Quote on Demand
Quote on demand is a mechanism where an order can initiate
a private auction, separate from the central limit order book
matching. A Quote Request is sent to the market makers for the
security, and only the order quantity is revealed by default (side
is not revealed by default). Before the automatic auction ends
(default 1 second) the market makers must reply with a Quote to
participate. The order is locked throughout the auction, while
quotes may be continuously updated.

At the auction uncross, only the order can match against the
market maker quotes, i.e. quotes does not match against each
other. If the entire order volume can be matched, trade(s) will be
disseminated and any remaining quotes canceled. Otherwise,
the order and any quotes are canceled.

Optionally, the order may have a sweep order book instruction.
In this case, the order will also match against the central limit
order book at the uncross time.

To initiate an automatic quote on demand auction, the Auction-
Type set to 100 (QodAuto) in the order, and TimeInForce must
be to B (Good for Auction). The sweep order book instruction is
activated by setting ExecInst to 'd' (Sweep Order Book).

22 / 34

Elasticia FIX Protocol

Note

Since the order is locked throughout the duration of
the automatic auction, the ExecInst value 'o' (Cancel
on Connection Loss) is not allowed here.

4. Market Data Service
The market data service is mainly used for receiving reference
data and market data from the exchange. The traffic is almost
entirely of a non-interactive “broadcast” nature. Non-interac-
tive since information is sent spontaneously from the exchange
(not in direct response to a request from the user). Broadcast
since the same information is sent to all users of the service.

Examples of non-interactive traffic include public orders and
trades as well as security definitions. An example of interactive
traffic is snapshot messages.

As a consequence of the non-interactive and broadcast prop-
erties of the service, data (typically orders from other users) is
pushed to a user’s session even when a user is oine. No sub-
scription requests are required nor supported by the service.
Instead, a user needs to synchronize with the service when log-
ging on, either on the session level (by requesting retransmis-
sion of lost messages) or on the application level (by requesting
snapshots).

Note that for scalability reasons the public service can be
divided into multiple FIX sessions. The public data is then parti-
tioned by security, meaning that security data and market data
for a given security is only sent on one of the FIX sessions. Refer-
ence data such as market structure and trading session status
is sent on all FIX sessions.

When multiple FIX sessions are used, the sessions should be con-
sidered independent of each other since no guarantees regard-
ing timing between the sessions can be made.

4.1. Full Snapshot Recovery
On the public service snapshots can be requested for the fol-
lowing:

Market Structure See the Market Definition
Request message in Sec-
tion 4.5.2, “Market Definition
Request (BT)”.

Trading Session Status See the Trading Session Sta-
tus Request message in Sec-
tion 4.5.6, “Trading Session Sta-
tus Request (g)”.

Securities See the Security List Request
message in Section 4.4.2, “Secu-
rity List Request (x)”.

Security Status See the Security Mass Sta-
tus Request message in Sec-
tion 4.4.5, “Security Mass Status
Request (CN)”.

Market Data See the Market Data Request
message in Section 4.6.2, “Mar-
ket Data Request (V)”.

Corporate Actions See the Corporate Action
Request message in Sec-
tion 4.7.3, “Corporate Action
Request (U2)”.

4.2. Message Overview
The following messages can be sent/received by the client to/
from the market data service. Depending on the role only a sub-
set of the following messages may be sent/received.

Note that since no operations that modify data are permitted
on the public service the messages for All and Read-only filter-
ing rules are the same.

Table 2. Message overview.

Message Class All? Read-
only?

MarketDataRequest
MarketDataSnapshotFullRe-
fresh
MarketDataIncrementalRe-
fresh
MarketDataRequestReject

Market data
Market data
Market data
Market data

send
recv
recv
recv

SecurityListRequest
SecurityList
SecurityDefinitionUpdateRe-
port

Security
Security
Security

send
recv
recv

SecurityMassStatusRequest
SecurityStatus

Security status
Security status

send
recv

MarketDefinitionRequest
MarketDefinition
MarketDefinitionUpdateRe-
port

Market structure
Market structure
Market structure

send
recv
recv

TradingSessionStatusRequest
TradingSessionStatus

Trading session
status
Trading session
status

send
recv

CorporateActionReport
CorporateActionRequest

Corporate action
Corporate action

recv
send

The following are examples of roles that can be useful when not
all information is required or can be handled.

Reference data is only needed, i.e. list of secu-
rities and market segments:
Market Structure=read-only,
Securities=read-only, Corpo-
rate Actions=none, Trading
Session Status=none, Secu-
rity Status=none, Market
Data=none.

Reference data with status is needed, i.e. list of securities
and market segments and the
trading status of the mar-
ket segments and securities:
Market Structure=read-only,
Securities=read-only, Corpo-
rate Actions=read-only, Trad-
ing Session Status=read-only,
Security Status=read-only,
Market Data=none.

4.3. Component Blocks

4.3.1. Security Defaults
Security parameters that can have default values on the mar-
ket segment level, and overridden on security level.

23 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

Currency String N15

ISO 4217 currency code.

InstrRegistry String N543

Values may include BIC for the depository or custo-
dian who maintain ownership records, the ISO coun-
try code for the location of the record, the value
"ZZ" to specify physical ownership of the security
(e.g. stock certificate), or a value beginning with
“DLT-” to identify a distributed ledger network.

BusinessCenter String N40471

A business center whose calendar is used for date
adjustment, e.g. "GBLO".

ZoneID String N20070

The IANA Time Zone identifier which is used for local
time and date conversions. Custom eld.

4.3.2. Trading Rules

Trading rules that can be specified on market segment level
and overridden on security level.

Tag Field Name Type Req

MinTradeVol decimal N562

Minimum trading volume that can be submitted

561 RoundLot decimal N

PriceType uint32 N423

Denes the default Price Type used for trading.
1=Percentage (i.e. percent of par)
2=Per unit (i.e. per share or contract)

MaxOrderExpireDuration uint32 N20054

Max duration in seconds of ExpireTime in GTC
orders. Custom eld.

MaxTradeTransBkd-
TimeDiff

uint32 N20055

Max time difference in seconds between Transact-
Time and TransBkdTime of trades, i.e. how far back
in time a manual trade can be reported. Custom
eld.

NoTickRules Sequence N1205

This block specifies the rules for determining how
a security ticks, i.e. the price increments at which it
can be quoted and traded.

→StartTickPriceRange decimal N1206

Starting price range for specified tick increment.

→EndTickPriceRange decimal N1207

Ending price range for specified tick increment.

→TickIncrement decimal N1208

Tick increment for stated price range.

1235 NoMatchRules Sequence N

→MatchAlgorithm String Y1142

The type of algorithm used to match orders in this
market segment.
"price-time"=FIFO matching with price-time order
priority.

Tag Field Name Type Req
"price-internal-time"=FIFO matching with price-
internal-time order priority.

→MatchType char N574

The point in the matching process at which the
matching algorithm applies.
'1'=One-Party Trade Report (privately negotiated
trade)
'2'=Two-Party Trade Report (privately negotiated
trade)
'4'=Auto-match
'7'=Call Auction
'x'=Manually Matched Trade Report

20056 NoMarketOrderRules Sequence N

→MarketOrderRule uint32 Y20057

The rules that applies for market order. Custom
eld.
1=Allow instantaneous (IOC or FoK) market orders
and during auctions.
2=Allow market orders to be placed into the order
book.
3=Market order protection enabled. Indicates
whether retailers are ensured that the market maker
is present when submitting instantaneous (IOC or
FoK) market orders.
4=Reveal market order in market data.
5=Match immediate market order only against
the best price level during continuous trading. Not
applicable to non-immediate market orders.

OrderProtectionAuction-
TimeMin

uint32 N20058

Lower bound in milliseconds of duration of the order
protection auction. Custom eld.

OrderProtectionAuction-
TimeMax

uint32 N20059

Upper bound in milliseconds of duration of the order
protection auction. Custom eld.

MissingReferen-
cePriceAuctionTimeMin

uint32 N20067

Lower bound in milliseconds of duration of the miss-
ing reference price auction. Custom eld.

MissingReferen-
cePriceAuctionTimeMax

uint32 N20068

Upper bound in milliseconds of duration of the miss-
ing reference price auction. Custom eld.

AllowReserveOrder char N20052

Indicates whether reserve orders are allowed on this
instrument. ASCII char enumeration (boolean). Cus-
tom eld.
'Y'=Reserve order allowed on instrument
'N'=Reserve order not allowed on instrument

MinReserveOrderValue decimal N20051

Minimum reserve order value, applicable for both
new orders and order modifications. If the eld is
absent or set to 0 it means that there are no mini-
mum value. Custom eld.

20060 MinReserveOrderValue-
Currency

String N

24 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

Currency for MinReserveOrderValue. ISO 4217 cur-
rency code. Custom eld.

20061 NoMarketDataRules Sequence N

→MarketDataRule uint32 Y20062

Market data visibility rules. Custom eld.
1=Reveal counterparty information for orders and
trades
2=Distribute orders during Pre-Open
3=Distribute equilibrium price during auctions

20063 NoPartyRules Sequence N

→PartyRule uint32 Y20064

Party information rules that applies. Custom eld.
1=Executing trader is required for orders and quotes.
2=ClientID is required for orders.
3=ClientID is NOT permitted for quotes.

20065 NoTradeReportRules Sequence N

→TradeReportRule uint32 Y20066

Rules for manual trade reports. Custom eld.
1=Allow all trade reports.
2=Allow only trade reports that do not add to the
Double Volume Cap (DVC) limits.

4.4. Security Messages

In this document order book and security are used interchange-
ably. Two order books for the same instrument (e.g. different
currencies) will be dened as two securities.

4.4.1. Security Component Block

This component block is used to dene a security. The security
is described in detail using the SecurityXML eld. The format of
the XML is described in NGM XML Security Specification.

The PriceType of the security controls the type of the Price eld
in orders and quotes for the security. When PriceType is per-
centage then a price of 99.5% is specified as Price=99.5.

Tag Field Name Type Req

 component block <SecurityRef>

454 NoSecurityAltID Sequence N

→SecurityAltID String Y455

Alternative security identifier of type specified in
SecurityAltIDSource.

→SecurityAltIDSource char Y456

Identifies the class of SecurityID.
'M'=Marketplace-assigned identifier
'4'=ISIN
'8'=Exchange Symbol
'D'=Valoren

 component block <SecurityDefaults>

NoMarketSegments Sequence N1310

A security is strictly member of one market segment.

→MarketID String N1301

Identifies the market. ISO 10383 Market Identifier
Code (MIC).

Tag Field Name Type Req

→MarketSegmentID String N1300

Identifies the market segment.

 →component block <TradingRules>

1184 SecurityXMLLen Length

SecurityXML UnicodeString

N

1185

XML data describing the security.

LiquidityStatus uint32 N20069

Liquidity status classification of this security.
Absence means unknown or N/A. Custom eld.
1=Liquid
2=Illiquid

4.4.2. Security List Request (x)

A list of the all available securities are requested with the Secu-
rity List Request message. The request will be replied to with one
or more Security List messages. The last Security List message
will always be indicated with the LastFragment eld set to 'Y'.
Note that a reply with 0 repeating securities may be sent as a
reply.

In the event of a malformed request, the response will be
a Security List message with SecurityRequestResult set to 1
(Invalid or unsupported request).

SecurityListRequest:

• is replied to with a SecurityList message, with SecurityRe-
questResult set to 0 (ValidRequest) and SecurityReqID set to
the value in the request message

• can be rejected with a SecurityList message, with SecurityRe-
questResult set to the reject reason and SecurityReqID set to
the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to x

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the SecurityListRequest message

Tag Field Name Type Req

 component block <StandardHeader>

320 SecurityReqID String Y

4.4.3. Security List (y)

Response to Security List Request.

SecurityList is sent:

• in reply to a SecurityListRequest message, with SecurityRe-
questResult set to 0 (ValidRequest) and SecurityReqID set to
the value in the request message

• to reject a SecurityListRequest message, with SecurityRe-
questResult set to the reject reason and SecurityReqID set to
the value in the request message

25 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

 component block <StandardHeader>

320 SecurityReqID String N

SecurityRequestResult uint32 N560

0=Valid request (default)
1=Invalid or unsupported request

LastFragment char N893

Indicates whether this is the last fragment in a
sequence of message fragments.
'N'=Not Last Message
'Y'=Last Message

146 NoRelatedSym Sequence N

 →component block <Security>

4.4.4. Security Definition Update Report (BP)

Incremental (unsolicited) update of available securities.

SecurityDefinitionUpdateReport is sent:

• unsolicited, when a change occurs

Tag Field Name Type Req

 component block <StandardHeader>

SecurityUpdateAction char N980

'A'=Add
'D'=Delete
'M'=Modify

SecurityMoveIndicator char N20027

Absence means No
'Y'=Yes. The SecurityUpdateAction (Add/Delete) is a
move between two market data channels.
'N'=No. The security appears for the rst time/is per-
manently removed

 component block <Security>

Text String N58

Comment, instructions or other identifying informa-
tion.

4.4.5. Security Mass Status Request (CN)

The status of all securities can be requested with the Security
Mass Status Request message. The reply is one or more Security
Status messages. The last Security Status message will always
be indicated with the LastRptRequested eld set to 'Y'. In the
unlikely event that there is no security dened a dummy Secu-
rity Status message with SecurityID absent (null) and LastRptRe-
quested eld set to 'Y' will be sent as a response.

Notice that the security status snapshot and the security list
snapshot is an exception that all replies are in the same order
as the requests sent. The correct behaviour to counter this is to
request the security status once the complete security list has
been received.

If no Security Status message is received for a security the trad-
ing status should be considered closed.

SecurityMassStatusRequest:

• is replied to with a SecurityStatus message, with SecuritySta-
tusReqID set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to CN

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the SecurityMassStatusRequest mes-
sage

Tag Field Name Type Req

 component block <StandardHeader>

324 SecurityStatusReqID String Y

4.4.6. Security Stat Component Block

This component block is used to describe the status of a secu-
rity.

Tag Field Name Type Req

SecurityTradingStatus uint32 N326

2=Trading halt
4=No Open / No Resume (closed)
17=Ready to trade (open)
18=Not available for trading (post open)
20=Unknown or Invalid (Request Reject)
21=Pre-open
101=Opening auction
102=Closing auction
103=Scheduled auction

HaltReason uint32 N327

Denotes the reason for the Opening Delay or Trad-
ing Halt.
100=Regulatory Halt
101=Other

CorporateAction MultipleString-
Value

N292

"A"=Ex-Dividend
"C"=Ex-Rights
"I"=Reverse Stock Split
"J"=Standard-Integer Stock Split
"Q"=Tender Oer

FinancialStatus MultipleString-
Value

N291

All values are mutually exclusive except 'Under
observation' and 'Order protection mode' which can
appear together with any of the others.
"W"=Knockout
"X"=Knockout buyback
"U"=Buyback
"V"=Distribution
"Z"=Under observation
"D"=Volatility guard dynamic
"S"=Volatility guard static
"M"=Order protection mode
"P"=Order protection auction
"Q"=Manual matching
"C"=Recalculated
"R"=Missing reference price auction
"G"=Generic (unscheduled) auction

26 / 34

Elasticia FIX Protocol

4.4.7. Security Status (f)

The Security Status message is used for unsolicited updates of
security status and for replies to a Security Mass Status Request.

SecurityStatus is sent:

• unsolicited, when a change occurs

• in reply to a SecurityMassStatusRequest message, with Secu-
rityStatusReqID set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

324 SecurityStatusReqID String N

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request. Field added.
'N'=Not Last Message
'Y'=Last Message

 component block <SecurityRef>

 component block <SecurityStat>

4.5. Market Structure Messages

Each security belongs to one (and only one) market segment.
The market segments can be organized in a hierarchy, but mar-
ket segments do not inherit properties and status from their par-
ent market segment. Each market segment has one (and only
one) trading session, which is used to convey the status of the
market segment.

The market status is conveyed using the Trading Session Status
message. The status of each security is sent individually using
the Security Status message. The timing between the market
status and the security status is not perfect, especially in the
case of randomized opening of the market. This means that the
security status should be used to see if e.g. the security is open
for trading, and the market status should be used to see if the
market segment is open or not.

4.5.1. Market Component Block

This component block is used to dene a market.

Tag Field Name Type Req

MarketID String Y1301

ISO 10383 Market Identifier Code (MIC).

MarketSegmentID String N1300

Identifies the market segment.

MarketSegmentDesc String N1396

Description or name of market segment.

1397 EncodedMktSegmDe-
scLen

Length

EncodedMktSegmDesc UnicodeString

N

1398

Encoded (non-ASCII) description or name of market
segment.

ParentMktSegmID String N1325

Reference to a parent market segment.

 component block <SecurityDefaults>

Tag Field Name Type Req

 component block <TradingRules>

4.5.2. Market Definition Request (BT)

A snapshot of the market structure can be obtained through a
Market Definition Request message. The request will be replied
to with one or more Market Definition messages. The last Mar-
ket Definition message will always be indicated with LastRptRe-
quested eld set to 'Y'. In the unlikely event that there are no
market or market segments dened a dummy Market Definition
message with MarketID set to "[N/A]" and LastRptRequested
eld set to 'Y' will be sent as a response.

In the event of a malformed request, the response will be a Busi-
ness Message Reject message.

MarketDefinitionRequest:

• is replied to with a MarketDefinition message, with MarketRe-
qID set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to BT

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the MarketDefinitionRequest message

Tag Field Name Type Req

 component block <StandardHeader>

MarketReqID String Y1393

Unique request id.

SubscriptionRequestType char Y263

'0'=Snapshot

4.5.3. Market Definition (BU)

The Market Definition message is used for delivering a snapshot
of the market structure.

MarketDefinition is sent:

• in reply to a MarketDefinitionRequest message, with Marke-
tReqID set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

MarketReqID String N1393

Reference to the request.

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request. Field added.
'N'=Not Last Message
'Y'=Last Message

 component block <Market>

4.5.4. Market Definition Update Report (BV)

The Market Definition Update Report message is used for deliv-
ering an incremental update of the market structure.

27 / 34

Elasticia FIX Protocol

MarketDefinitionUpdateReport is sent:

• unsolicited, when a change occurs

Tag Field Name Type Req

 component block <StandardHeader>

MarketReportID String Y1394

Unique identifier for each MarketDefinitionUp-
dateReport message.

MarketUpdateAction char N1395

'A'=Add
'D'=Delete
'M'=Modify

 component block <Market>

4.5.5. Trading Session Component Block

This component block is used to describe the trading session
status of a market.

Tag Field Name Type Req

MarketID String N1301

Market for which Trading Session applies.

MarketSegmentID String N1300

Market Segment for which Trading Session applies.

TradSesReqID String N335

Trading Session Status Request ID

TradSesStatus uint32 Y340

State of the trading session.
0=Unknown
1=Halted
2=Open
3=Closed
4=Pre-Open
5=Pre-Close
6=Request Rejected
7=Opening auction
8=Closing auction
9=Scheduled auction

LastRptRequested char N912

Indicates that this is the last message which will be
returned as a result of the request. Field added.
'N'=Not Last Message
'Y'=Last Message

Text String N58

Error message.

4.5.6. Trading Session Status Request (g)

The status of the trading sessions (market segments) can be
obtained through the Trading Session Status Request message.
The request will be replied to with one or more Trading Session
Status messages. The last Trading Session Status message will
always be indicated with LastRptRequested eld set to 'Y'. In the
unlikely event that there is no market or trading session (mar-
ket segment) dened a dummy Trading Session Status message
with MarketID set to "[N/A]" and LastRptRequested eld set to
'Y' will be sent as a response.

TradingSessionStatusRequest:

• is replied to with a TradingSessionStatus message, with
TradSesReqID set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to g

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the TradingSessionStatusRequest mes-
sage

Tag Field Name Type Req

 component block <StandardHeader>

TradSesReqID String Y335

Unique request id.

SubscriptionRequestType char Y263

'0'=Snapshot

4.5.7. Trading Session Status (h)
Provides information on the status of a market. The Trading
Session Status message is sent both as a reply to a previous
request and unsolicited whenever the status of a trading ses-
sion changes.

TradingSessionStatus is sent:

• unsolicited, when a change occurs

• in reply to a TradingSessionStatusRequest message, with
TradSesReqID set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <TradingSession>

4.6. Market Data Messages
The MDEntryID eld contains the trade id for trades and the
public order id for orders. The id is static, meaning that it will not
change through the lifetime of the order or the trade. It is not
used for other entry types (e.g. high price).

Bid ('0') MDEntryPx and MDEntrySize contains the price
and volume of the bid order or quote. Market
orders do not have a price.

Oer ('1') MDEntryPx and MDEntrySize contains the price
and volume of the oer order or quote. Market
orders do not have a price.

Trade ('2') MDEntryPx and MDEntrySize contains the price
and volume of the trade.

The statistics are maintained for session and day. The values
can be requested in a snapshot until they are generated or
cleared next time.

Session MDStatScope set to "1". The Session runs from the
moment the security status enters pre-open until it
is closed. If a snapshot is requested it will send the
current statistics (in synchronization with incremen-
tal updates) so the client can continue calculating
the statistics with trades as a basis. If a snapshot is
asked when an order book is closed, the statistics of
the last session will be sent. When the statistics are

28 / 34

Elasticia FIX Protocol

reset at the start of the pre-trade an increment with
all values except closing (which will be the closing of
the previous session) set to 0 will be sent.

Day MDStatScope set to "2". The Day statistics start at
00:00 (market time) and ends 23:59:59:999. If a snap-
shot is requested it will send the current statistics
(in synchronization with incremental updates) so the
client can continue calculating the statistics with
trades as a basis. When the statistics are reset at
midnight an increment with all values except closing
(which will be the closing of the previous session) set
to 0 will be sent. Also note that the Day closing price
can be set to the theoretical price of an instrument,
and must thus not necessarily be a direct reflection
of the trades conducted in the order book of the
instrument.

Opening statistics for the day session is dened as the rst
opening of any session and the last closing taken from the last
session. Session and day values are differentiated by the MDS-
tatsScope eld.

Opening Price ('4') MDEntryPx contains the price.

Closing Price ('5') MDEntryPx contains the price. The
TransactTime contains the time the
closing price was generated. A day
or official day closing price with the
MarketMakerQuote eld set to 'Y'
indicates that the closing price is
theoretical and based on the quota-
tion of the market maker.

The following MDEntryTypes will only be sent when they are
reset (beginning of trading session or day) and whenever they
are changed due to a trade cancellation. If the receiver need
these values continuously they can be calculated based on
received trades. A trade will have the StatsIndicators set for the
statistics it aects. When a trade cancel occurs the aected
MDEntryType will also be sent with its new value. E.g. if a can-
celled trade would aect the high price a new high price is sent
directly aer the trade cancellation. This way the receiver do
not have to calculate the statistics based on cancelled trades,
only new trades.

High Price ('7') MDEntryPx contains the price.
Updated when StatsIndi-
cators contains StatsType
"High/Low Price".

Low Price ('8') MDEntryPx contains the price.
Updated when StatsIndi-
cators contains StatsType
"High/Low Price".

First Price ('x') MDEntryPx contains the price.
Updated when StatsIndi-
cators contains StatsType
"Exchange Last". The rst
price is updated according
to the trade time (Trans-
BkdTime if present, other-
wise TransactTime) of trades
(which need not be delivered
in this order in case of man-
ually reported trades). Trans-
actTime contains the rst
execution time.

Last Price ('y') MDEntryPx contains the price.
Updated when StatsIndi-
cators contains StatsType
"Exchange Last". The last
price is updated according
to the trade time (Trans-
BkdTime if present, other-
wise TransactTime) of trades
(which need not be delivered
in this order in case of man-
ually reported trades). Trans-
actTime contains the last exe-
cution time.

VWAP Turnover/Volume ('w') MDEntryPx and MDEntrySize
contains the turnover and
trade volume. The actual
VWAP is calculated as the
turnover divided by the vol-
ume. Updated when Stat-
sIndicators contains Stat-
sType "Average Price".

Trade Volume ('B') MDEntrySize contains the
trade volume. Updated when
StatsIndicators contains Stat-
sType "Turnover".

Late Trade Volume ('u') The trade volume of late
reported trades, e.g. from pre-
vious day or session. MDEn-
trySize contains the trade vol-
ume. Updated when Stat-
sIndicators contains Stat-
sType "Late Turnover". Note:
This value can be negative,
e.g. if a trade from previous
day or session is cancelled.

Turnover ('z') MDEntryPx contains the
turnover. Updated when Stat-
sIndicators contains Stat-
sType "Turnover".

Late Turnover ('v') The turnover of late reported
trades, e.g. from previ-
ous day or session. MDEn-
tryPx contains the turnover.
Updated when StatsIndica-
tors contains StatsType "Late
Turnover". Note: This value
can be negative, e.g. if a
trade from previous day or
session is cancelled.

For any auction, opening auction, closing auction or volatil-
ity guard auction, the equilibrium price, available bid and ask
volume are continuously disseminated during and upon entry
of the auction for each order book. The equilibrium price with
available buy and sell volume are updated every time there is
a change in an order book but no more than once per second
per order book. In the case where an order book is not crossed,
the elds equilibrium price and volume are absent (null).

Both MDEntries Equilibrium Buy and Equilibrium Sell are sent
synchronously in pairs for each order book.

Equilibrium Buy ('b') If the order book is crossed
MDEntryPx contains the equi-

29 / 34

Elasticia FIX Protocol

librium price and MDEntrySize
contains available buy volume
at equilibrium price, otherwise
MDEntryPx and MDEntrySize are
absent (null).

Equilibrium Sell ('s') If the order book is crossed
MDEntryPx contains the equi-
librium price and MDEntrySize
contains available sell volume
at equilibrium price, otherwise
MDEntryPx and MDEntrySize are
absent (null).

4.6.1. MDEntry Component Block

This component block is used to dene a market data entry, e.g.
an order, trade or closing price.

Tag Field Name Type Req

MDEntryType char Y269

'0'=Bid
'1'=Oer
'2'=Trade
'4'=Opening Price
'5'=Closing Price
'7'=Trading Session High Price
'8'=Trading Session Low Price
'B'=Trade Volume
'u'=Late Trade Volume
'v'=Late Turnover
'w'=VWAP Turnover/Volume
'x'=First Price
'y'=Last Price
'z'=Turnover
'b'=Equilibrium Buy
's'=Equilibrium Sell
'r'=Accrued Interest Rate (100 = 100%).

MDStatScope uint32 N20016

Denes the scope of the statistics in periods of time.
Custom eld.
1=Session
2=Day

MDEntryPx decimal N270

Entry price.

MDEntrySize decimal N271

Entry quantity.

MDEntryID String N278

Refers to previous MDEntryID when MDUpdateAc-
tion=Change or Delete.

MDEntryPositionNo uint32 N290

Display position of a bid or oer within a price level,
numbered from most competitive to least competi-
tive, per market side, beginning with 1. This value is
only set when MDUpdateAction is New or Change
and only if the value has changed.

MDEntryBuyer String N288

Marketplace assigned member code. Reveals the
buyer when MDEntryType is Bid or Trade and coun-
terparties are not hidden in the security.

289 MDEntrySeller String N

Tag Field Name Type Req

Marketplace assigned member code. Reveals the
seller when MDEntryType is Oer or Trade and
counterparties are not hidden in the security.

MatchType char N574

Match type for trades.
'1'=One-Party Trade Report (privately negotiated
trade)
'2'=Two-Party Trade Report (privately negotiated
trade)
'4'=Auto-match
'7'=Call Auction
'x'=Manually Matched Trade Report

TrdType uint32 N828

Trade type for trades.
0=Regular Trade
52=Exchange Granted Trade

TradeCondition MultipleString-
Value

N277

Trade conditions set by exchange.
"I"=Sold Last (late reporting)
"AV"=Outside Spread
"X0"=Outside Spread Unknown
"XB"=Knockout buyback Trade
"XS"=Buyback Trade
"XD"=Distribution Trade
"XAO"=Opening auction Trade
"XAC"=Closing auction Trade
"XAD"=Volatility guard dynamic auction Trade
"XAS"=Volatility guard static auction Trade
"XAP"=Order protection auction Trade
"XAR"=Missing reference price auction trade
"XLI"=Large In Scale trade
"0"=Cancel (only used in snapshot)
"6"=Benchmark trade. MiFID II regulatory eld
"XQ"=Quote on demand trade.

TrdPriceCondition uint32 N1839

Applies only to manual trades. MiFID II regulatory
eld.
13=Special dividend Trade.
15=Non-price forming Trade.
16=Trade not contributing to the price discovery
process

AlgorithmicTrdIndicator uint32 N2667

MiFID II regulatory eld. Absence means '0'.
0=Non-algorithmic trade
1=Algorithmic trade

OrderCategory char N1115

Applies only to manual trades. MiFID II regulatory
eld.
'3'=Privately Negotiated Trade

NoTrdRegPublications Sequence N2668

Applies only to manual trades. MiFID II regulatory
eld.

→TrdRegPublicationType uint32 N2669

0=Pre-trade transparency waiver

2670 →TrdRegPublReason uint32 N

30 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

0=No preceding order in book as transaction price
set within average spread of a liquid instrument.
ESMA RTS "NLIQ".
1=No preceding order in book as transaction price
depends on system-set reference price for an illiquid
instrument. ESMA RTS "OILQ".
2=No preceding order in book as transaction price
is for transaction subject to conditions other than
current market price. ESMA RTS "PRIC".

LotType char N1093

Denes the lot type assigned to the order.
'1'=Odd Lot
'2'=Round Lot

TransactTime UTCTime-
stampMicros

N60

When the trade was executed or when the order
was created, updated or cancelled. For official sta-
tistics this denotes the time of calculation. Field
added (partially).

TransBkdTime UTCTime-
stampMicros

N483

When the trade was booked, if other than Transact-
Time. Used for manual trade reports. Field added
(partially).

AggressorSide char N5797

Indicates which side is aggressor of the trade. If
there is no value present, then there is no aggressor.
Custom eld.
'1'=buy
'2'=sell

MarketMakerQuote char N20033

Indicates that this MDEntry originates from a Market
Maker quote. Only applicable if MDEntryType = '0',
'1' or '5'. ASCII char enumeration (boolean). Custom
eld. Absence means 'N'.
'N'=Not Market Maker Quote
'Y'=Market Maker Quote

4.6.2. Market Data Request (V)

Market data (orders, trades, etc.) can be requested with the
Market Data Request message. The reply is one or more Market
Data Snapshot Full Refresh messages. Requested market data
types (for example bid and oers or trades) must be specified
through specifying one or more Market Data Entry Types. At
least the trades for the last 72 hours are available. Note that
a reply with 0 repeating market data entries may be sent as
a reply. The last Market Data Snapshot Full Refresh message
will always be indicated with the LastRptRequested eld set to
'Y'. In the unlikely event that there are no securities dened a
dummy Market Data Snapshot Full Refresh message with Secu-
rityID absent (null) and LastRptRequested eld set to 'Y' will be
sent as a response.

Parallel requests with equal MDReqID will be rejected, the
requester should either use a unique MDReqId for each request
or perform the requests sequentially.

In the event of a malformed request, the response will be a Mar-
ket Data Request Reject message.

MarketDataRequest:

• is replied to with a MarketDataSnapshotFullRefresh message,
with MDReqID set to the value in the request message

• can be rejected with a MarketDataRequestReject message,
with MDReqRejReason set to the reject reason and MDReqID
set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to V

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the MarketDataRequest message

Tag Field Name Type Req

 component block <StandardHeader>

MDReqID String Y262

Unique identifier for Market Data Request.

SubscriptionRequestType char Y263

'0'=Snapshot

MarketDepth uint32 Y264

Valid values:
0=Full book

NoMDEntryTypes Sequence Y267

Requested entry types. Empty list means all entry
types.

→MDEntryType char Y269

'0'=Bid
'1'=Oer
'2'=Trade
'4'=Opening Price
'5'=Closing Price
'7'=Trading Session High Price
'8'=Trading Session Low Price
'B'=Trade Volume
'u'=Late Trade Volume
'v'=Late Turnover
'w'=VWAP Turnover/Volume
'x'=First Price
'y'=Last Price
'z'=Turnover
'b'=Equilibrium Buy
's'=Equilibrium Sell
'r'=Accrued Interest Rate (100 = 100%).

NoDates Sequence N580

Range of dates for requested trades. Since
(NoDates=1) or Between (NoDates=2) dates, inclu-
sive. Sequence added.

→TransactTime UTCTime-
stampMicros

Y60

When the trade was created.

4.6.3. Market Data Snapshot Full Refresh (W)

Response to a Market Data Request.

MarketDataSnapshotFullRefresh is sent:

• in reply to a MarketDataRequest message, with MDReqID set
to the value in the request message

31 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

 component block <StandardHeader>

262 MDReqID String N

 component block <SecurityRef>

268 NoMDEntries Sequence Y

 →component block <MDEntry>

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request. Field added.
'N'=Not Last Message
'Y'=Last Message

4.6.4. Market Data Incremental Refresh (X)

Incremental (unsolicited) update of market data.

MarketDataIncrementalRefresh is sent:

• unsolicited, when a public change occurs in the market, for
example order updates, new trades, etc.

Tag Field Name Type Req

 component block <StandardHeader>

268 NoMDEntries Sequence Y

 →component block <MDEntry>

→MDUpdateAction char Y279

'0'=New
'1'=Change
'2'=Delete

 →component block <SecurityRef>

1175 →NoStatsIndicators Sequence N

→→StatsType uint32 Y1176

Type of statistics.
1=Exchange Last
2=High / Low Price
3=Average Price (VWAP, TWAP etc)
4=Turnover
100=Late Turnover

4.6.5. Market Data Request Reject (Y)

Reject of a Market Data Request in case of a malformed
request.

MarketDataRequestReject is sent:

• to reject a MarketDataRequest message, with MDReqRe-
jReason set to the reject reason and MDReqID set to the value
in the request message

Tag Field Name Type Req

 component block <StandardHeader>

MDReqID String Y262

Refers to the request.

MDReqRejReason char N281

'1'=Duplicate MDReqID
'2'=Insufficient Bandwidth
'3'=Insufficient Permissions

Tag Field Name Type Req
'4'=Unsupported SubscriptionRequestType
'5'=Unsupported MarketDepth
'6'=Unsupported MDUpdateType
'8'=Unsupported MDEntryType
'A'=Unsupported Scope
'x'=Invalid

Text String N58

Error message.

4.7. Corporate Action Messages

4.7.1. Corp Action Component Block

This component block denes a corporate action, such as a
split. The corporate action message denes a corporate action
and it’s parameters while the ag in the security status is meerly
an indicator for the trader to be observant of events that will or
recently has occured. Notice that a corporate action that has
been executed may never be deleted and only the description
may be modified.

Tag Field Name Type Req

CorpActionType uint32 N20004

The type of corporate action. Custom eld.
0=Cash dividend
1=Split
2=Reverse-split
3=Rights issue
99=Other

CorpActionID String N20005

Unique identifier for this corporate action event.
Custom eld.

CorpActionDescr String N20008

Textual description of the corporate action. Custom
eld.

CorpActionStatus uint32 N20010

Custom eld.
0=Not executed
1=Executed

ExTime UTCTime-
stampMicros

N20017

When this corporate action takes eect. Custom
eld.

TransactTime UTCTime-
stampMicros

N60

When this corporate action was created or
updated.

AdjustmentFactorNu-
merator

uint32 N20006

The adjustmentfactor of a corporate action is the
numerator divided by the denominator and is used
when adjusting historical values for the corporate
action. Prices should be multiplied with the factor
while quantities should be divided by the factor.
Custom eld.

20022 AdjustmentFactorDe-
nominator

uint32 N

32 / 34

Elasticia FIX Protocol

Tag Field Name Type Req

The adjustmentfactor of a corporate action is the
numerator divided by the denominator and is used
when adjusting historical values for the corporate
action. Prices should be multiplied with the factor
while quantities should be divided by the factor.
Custom eld.

Dividend decimal N20007

Dividend, 3 decimal precision. Custom eld.

4.7.2. Corporate Action Report (U1)

The Corporate Action Report is used for unsolicited updates
of corporate actions and as a response to a Corporate Action
Request. The eld CorpUpdateAction is absent (null) in a snap-
shot response.

CorporateActionReport is sent:

• unsolicited, when a change occurs

• in reply to a CorporateActionRequest message, with Cor-
pActionResult set to 0 (Succeeded) and CorpActionReqID set
to the value in the request message

• to reject a CorporateActionRequest message, with Cor-
pActionResult set to the reject reason and CorpActionReqID
set to the value in the request message

Tag Field Name Type Req

 component block <StandardHeader>

 component block <SecurityRef>

CorpActionReqID String N20009

Unique request identifier. Custom eld.

ActionResult uint32 N20012

Result returned to a Corporate Action Request mes-
sage. Custom eld.
0=Succeeded (default)
1=Invalid or unsupported request

LastRptRequested char N912

Indicates that this is the last report which will be
returned as a result of the request.
'N'=Not Last Message
'Y'=Last Message

CorpUpdateAction char N20011

The update action of an incremental update.
Absent in a snapshot response. Custom eld.
'A'=Add
'D'=Delete
'M'=Modify

 component block <CorpAction>

4.7.3. Corporate Action Request (U2)

All corporate actions can be requested with the Corporate
Action Request message. The reply is one or more Corporate
Action Report messages. The last Corporate Action Report
message will always be indicated with the LastRptRequested
eld set to 'Y'. In the event that there are no corporate actions
a dummy Corporate Action Report message with SecurityID
absent (null) and the LastRptRequested eld set to 'Y' will be

sent as a response. All planned and already executed Corpo-
rate Actions will be sent.

In the event of a malformed request, the response will be a Cor-
porate Action Report message with the CorpActionResult eld
set to 1 (Invalid or unsupported request).

CorporateActionRequest:

• is replied to with a CorporateActionReport message, with
CorpActionResult set to 0 (Succeeded) and CorpActionReqID
set to the value in the request message

• can be rejected with a CorporateActionReport message, with
CorpActionResult set to the reject reason and CorpActionRe-
qID set to the value in the request message

• can be rejected with a BusinessMessageReject message, with
BusinessRejectReason set to the reject reason and RefMsg-
Type set to U2

• can be rejected with a Reject message, with SessionRejec-
tReason set to the reject reason and RefSeqNum set to the
sequence number of the CorporateActionRequest message

Tag Field Name Type Req

 component block <StandardHeader>

CorpActionReqID String Y20009

Unique request identifier. Custom eld.

5. MiFID II Regulatory elds

5.1. Post trade transparency

MiFID II regulatory post-trade information mapping against FIX
elds.

• BENCH

• Private service: SecondaryTrdType(855) = 64 (Benchmark
trade)

• Public service: TradeCondition(277) = 6 (Benchmark trade)

• NPFT

• TrdPriceCondition(1839) = 15 (Non price forming trade)

• TNCP

• TrdPriceCondition(1839) = 16 (Trade not contributing to the
price discovery process)

• SDIV

• TrdPriceCondition(1839) = 13 (Special dividend trade)

• ALGO

• AlgorithmicTrdIndicator(2667) = 1 (Algorithmic trade)

• NLIQ

• TrdRegPublicationType(2669) = 0 (Pre-trade transparency
waiver)

• TrdRegPublicationReason(2670) = 0 (No preceding order in
book as transaction price set within average spread of a
liquid instrument)

33 / 34

Elasticia FIX Protocol

• OILQ

• TrdRegPublicationType(2669) = 0 (Pre-trade transparency
waiver)

• TrdRegPublicationReason(2670) = 1 (No preceding order in
book as transaction price depends on system-set refer-
ence price for an illiquid Instrument)

• PRIC

• TrdRegPublicationType(2669) = 0 (Pre-trade transparency
waiver)

• TrdRegPublicationReason(2670) = 2 (No preceding order
in book as transaction price is subject to conditions other
than current market price)

5.2. Order Record Keeping

5.2.1. Description of the different party roles

For EU markets it is mandatory to provide party information on
orders and quotes and the information in this chapter applies. If
not sure, consult the Market Model or the market place for infor-
mation on whether it is required to supply party information.

• Only identifiers in the form of short codes are allowed to be
sent over the NGM FIX Protocol.

• PartyID values 0-10 are reserved and must not be used to
identify any party.

• The short code together with the PartyRoleQualifier is the
unique identifier for a mapping.

• Information on the mapping between a short code + role (Par-
tyRoleQualifier) and the actual identifier (National ID, LEI and
Algorithm ID) must:

• never change over time

• be provided separately, outside the NGM FIX Protocol,

• have been supplied before to the rst usage of the short
code in the protocol, or latest by the end of the actual cal-
endar day that the short code is rst used (see the Market
Model for details).

Client Identification (PartyRole = 3) Used to iden-
tify the client of the member
or participant of the trading
venue.

• In case of that there is no client for an order, the PartyID
should be set to 0 (=NONE) for PartyRole = 3.

• In case of aggregated orders, the PartyID should be set to 1
(=AGGR) for PartyRole = 3.

• In case of pending allocations, the PartyID should be set to 2
(=PNAL) for PartyRole = 3.

Executing Trader (PartyRole = 12) Used to identify the
person or algorithm within the mem-
ber or participant of the trading venue
who is responsible for the execution
of the transaction resulting from the
order or the quote. Executing Trader is

required to be specified on all orders
and quotes.

• In case of the time and venue of the order is instructed by the
client of the member or participant of the trading venue the
PartyID should be set to 3 (=CLIENT) for PartyRole = 12.

Investment Decision Maker (PartyRole = 122) Used
to identify the person or
the algorithm within the
member or participant of
the trading venue who is
responsible for the invest-
ment decision.

5.2.2. Orders

• Party information is required on the rst submission of an
order (New Order Single)

• Party information is not possible to change aer the rst sub-
mission.

• Party information is acknowledged in ExecutionReports.

• If a PartyRole is populated in an order, it is required that the
accompanying elds PartySourceID, PartyID and PartyRole-
Qualifier are also populated.

• Client identification is mandatory for orders.

• Executing Trader (PartyRole = 12) is mandatory for orders.

• Investment Decision Maker (PartyRole = 122) shall not be set
when the investment decision was not made by a person or
algorithm within the member or participant of the exchange.

5.2.3. Quotes

• Party information is required on the rst entry of a quote

• Party information must not be set in subsequent updates of
the quote.

• If party information is supplied in updates of a quote, then the
update is rejected.

• Party information is only acknowledged in the rst QuoteSta-
tusReport.

• If a PartyRole is populated in a quote, it is required that the
accompanying elds PartySourceID, PartyID and PartyRole-
Qualifier are also populated.

• Executing Trader (PartyRole = 12) is mandatory for quotes.

• Investment Decision Maker (PartyRole = 122) shall be set when
the investment decision was made by a person or algorithm
within the member or participant of the exchange.

34 / 34

