
NGM FIX Protocol

Version 1.18.0

6 May 2020

Copyright © Nordic Growth Market, NGM AB.

2

Contents

1 Overview 7
1.1 About this Document . 7

2 General Service Information 9
2.1 Recovery . 9
2.2 Filtering . 9

2.2.1 User filtering parameters 10
2.3 Throughput Limit . 10

2.3.1 Message Throughput . 10
2.3.2 Snapshot Throughput . 10

2.4 Component Blocks . 11
2.4.1 Standard Header . 11
2.4.2 Security Ref . 13

2.5 Session Messages . 13
2.5.1 Logon (A) . 13
2.5.2 Logout (5) . 16
2.5.3 TestRequest (1) . 17
2.5.4 Heartbeat (0) . 18
2.5.5 SequenceReset (4) . 19
2.5.6 Reject (3) . 19

2.6 General Application Level Messages 20
2.6.1 Business Message Reject (j) 20

3 Private Service 23
3.1 User Model . 23
3.2 Action on Connection Loss . 24
3.3 Full Snapshot Recovery . 25
3.4 Provider Connection . 25

3.4.1 Supported messages . 25
3.5 Message Overview . 26

3.5.1 Filtering Examples . 26
3.6 Parties Information . 27

3.6.1 Parties Component Block 27
3.7 Order Messages . 28

3.7.1 Order Component Block 28
3.7.2 Order Attributes Grp Component Block 31
3.7.3 New Order Single (D) . 31
3.7.4 Order Cancel/Replace Request (G) 33

3

CONTENTS

3.7.5 Order Cancel Request (F) 33
3.7.6 Execution Report (8) . 34
3.7.7 Order Cancel Reject (9) 39
3.7.8 Order Mass Status Request (AF) 40

3.8 Quote Messages . 41
3.8.1 Quote Grp Component Block 42
3.8.2 Quote (S) . 43
3.8.3 Quote Status Report (AI) 45
3.8.4 Quote Cancel (Z) . 49
3.8.5 Quote Request (R) . 51
3.8.6 Quote Status Request (a) 51

3.9 Trade Messages . 52
3.9.1 One-Party Report for Pass-Thru 53
3.9.2 Two-Party Report . 55
3.9.3 Trade Component Block 56
3.9.4 Trade Capture Report (AE) 62
3.9.5 Trade Capture Report Ack (AR) 63
3.9.6 Trade Capture Report Request (AD) 65
3.9.7 Trade Capture Report Request Ack (AQ) 66

3.10 Financial Status Messages . 68
3.10.1 User Security Status Update Request (FU) 68
3.10.2 User Security Status Update Response (FR) 69

4 Public Service 71
4.1 Full Snapshot Recovery . 71
4.2 Message Overview . 72

4.2.1 Filtering Examples . 73
4.3 Component Blocks . 73

4.3.1 Security Defaults . 73
4.3.2 Trading Rules . 74

4.4 Security Messages . 78
4.4.1 Security Component Block 78
4.4.2 Security List Request (x) 81
4.4.3 Security List (y) . 82
4.4.4 Security Definition Update Report (BP) 83
4.4.5 Security Mass Status Request (NGM-ex) 83
4.4.6 Security Stat Component Block 84
4.4.7 Security Status (f) . 86

4.5 Market Structure Messages . 87
4.5.1 Market Component Block 87
4.5.2 Market Definition Request (BT) 88
4.5.3 Market Definition (BU) 89
4.5.4 Market Definition Update Report (BV) 89
4.5.5 Trading Session Component Block 90
4.5.6 Trading Session Status Request (g) 91
4.5.7 Trading Session Status (h) 92

4.6 Market Data Messages . 92
4.6.1 MDEntry Component Block 96
4.6.2 Market Data Request (V) 101
4.6.3 Market Data Snapshot Full Refresh (W) 103

4

CONTENTS

4.6.4 Market Data Incremental Refresh (X) 104
4.6.5 Market Data Request Reject (Y) 105

4.7 Corporate Action Messages . 105
4.7.1 Corp Action Component Block 105
4.7.2 Corporate Action Report (U1) 107
4.7.3 Corporate Action Request (U2) 108

5 FAST Encoding and Templates 111
5.1 Data Types . 111

5.1.1 Strings . 112
5.1.2 Identifiers . 112
5.1.3 Enumerations . 112
5.1.4 Timestamps and Dates 112

5.2 Templates . 112

A MiFID II Regulatory fields 115
A.1 Post trade transparency . 115
A.2 Order Record Keeping . 116

A.2.1 Description of the different party roles 116
A.2.2 Orders . 117
A.2.3 Quotes . 117

B Manually Matched Orderbooks 119
B.1 Overview . 119
B.2 Manual Match Report . 119

5

CONTENTS

6

Chapter 1

Overview

The NGM FIX protocol is the main protocol for communicating with the NGM
trading system. The following standard protocols are used:

� FIX 5.0 Service Pack 2 for application level messages.

� FIX session protocol FIXT 1.1 for maintaining FIX sessions.

� FAST 1.1 (FIX Adapted for STreaming) is used for encoding FIX mes-
sages, meaning that the traditional ASCII encoding (“Tag=Value”) is not
supported.

� FAST SCP 1.1 (Session Control Protocol), level 2 (hello, alert and reset
messages) is used for managing FAST sessions.

� TCP is used as the underlying reliable transport protocol.

Two services are offered to the user; a private service for order management,
order status, trade reporting and similar tasks, and a public service for market
data, reference data and other information. Message filtering allows a user to
limit which messages can be sent or will be received on a service.

Exchange
SystemPrivate Service

Integrating
System

Message
Filtering

Trading,
Backoffice,
Market Data
Vendor, etc.

send
recv

Public Service #1

Public Service #n

Figure 1.1: Service overview. All connections are FIX/FAST over TCP/IP.

1.1 About this Document

The reader of this document should be somewhat familiar with the FIX protocol.
Any non-standard FIX fields or changes from the FIX standard are clearly

7

Overview

highlighted. Whenever we felt that the FIX protocol specification is unclear or
something must be bilaterally agreed it is also described in this document. Note
that the type column in the message tables contains the FAST data type that
is used (see chapter 5).

Chapter 1 (this chapter) gives an overview of the NGM FIX protocol.

Chapter 2 describes the parts of the protocol that are common across all ser-
vices, including the session layer.

Chapter 3 explains the private service which is used for orders, quotes and
trades.

Chapter 4 explains the public service which is used for dissemination of market
data and reference data.

Chapter 5 describes how FAST is applied to the FIX messages and details
about data types.

8

Chapter 2

General Service Information

This chapter describes the parts of the protocol that are common across all
services.

2.1 Recovery

During session initialization, message gaps can occur. These are detected by ob-
serving the message sequence number. In these cases two recovery mechanisms
are supported; message recovery and full snapshot recovery. Message recovery
is the preferred way to quickly recover a few lost messages. In certain cases
a session reset is required, e.g. too long time since last connection or disaster
recovery (e.g. lost session state). After a reset the client must do a full snapshot
recovery.

Message recovery is only accepted during logon by observing the NextEx-
pectedSeqNum field. Note that the ResendRequest message is not supported.
See section 2.5.1 for more information and message scenarios.

During full snapshot recovery the client should expect unsolicited updates
mixed with snapshot replies, especially if a snapshot is requested intra-day. It
is guaranteed that the last message received is always the most recent one,
regardless if it is a snapshot reply or an unsolicited update.

2.2 Filtering

For users requiring limited information, functionality or privileges, filtering can
be applied to control what can be sent by the exchange or the user. Filtering
configuration is performed by contacting the exchange manually.

For each data class, the following filter rules exist:

All The user can send operations, receive live changes and request snapshots.
This is the default.

Read-only The user can only receive live changes and request snapshots.

None The user cannot send operations nor receive any data.

Snapshot-only The user can only request snapshots. This is a last resort,
since we prefer that users can handle live data or do not receive it at all.

9

General Service Information

Unauthorized operations will be rejected with the Business Message Reject
message with BusinessRejectReason set to 6 (Not Authorized).

All messages are sent to all users in the trader group with the exception of
snapshot replies and session control messages (logon replies and such). As such
clients should be aware they will receive the replies (execution reports, trade
capture reports and so forth) generated by their peers activities in the market.
If this is undesired the user should be in its own trader group or use filtering.
Having a private trader group is used if one user does not wish to get information
about his peers activities in the market but only his own. Filtering is used if the
user wishes to see only certain information, for example only trades, but from
all users in the trader group.

What messages are included in each chapter is defined in the messages
overview section in each service chapter.

2.2.1 User filtering parameters

User filtering parameters offer a fine grained control of which information a user
is allowed to view and manipulate. A typical example is access to a subset of
the available market segments.

Unauthorized operations will be rejected in the same way as for the coarse
grained filtering, as described above.

2.3 Throughput Limit

2.3.1 Message Throughput

Each user have a throughput limit set, which limits the number of messages
that can be sent to the exchange per second. The throughput counter is reset
each second (i.e. not a sliding window), and when the throughput exceeds the
limit any additional messages are delayed until the next second.

The delaying of the operations is performed at the TCP level, resulting in
queues first in the exchange TCP buffer, then in the client side TCP buffer
and finally in the client side application code. This means that the easiest way
of avoiding delays is simply not to exceed the throughput limit. Continuous
monitoring of the delay of operations is another approach.

The throughput limit that is used for your user is only available offline
(outside the protocol), i.e. contact the exchange for more information.

2.3.2 Snapshot Throughput

Apart from the message throughput limit there is an additional snapshot limi-
tation. Each user has a certain number of snapshot requests it can perform per
hour. The snapshot counter is reset after one hour, starting from the point in
time where the first snapshot was performed.

Note that the snapshot thoughput limitation is applied per snapshot type,
thus exceeding the limit of a certain snapshot will not affect other snapshot
types. For available snapshot types see section 3.3 and 4.1.

If a user exceeds the limit for a specific snapshot type within the time period,
the exchange will reply with a Business Message Reject.

10

2.4 Component Blocks

2.4 Component Blocks

2.4.1 Standard Header

The Standard Header is included in all FIX messages.
For inbound messages (to NGM):

� SenderCompID denotes the NGM trader group id or public group id.

� SenderSubID is intended for the client side user name.

� TargetCompID should be set to ”NGM”.

� TargetSubID should be absent.

For outbound messages (from NGM):

� SenderCompID is set to ”NGM”.

� SenderSubID is absent.

� TargetCompID denotes the NGM trader group id or public group id.

� TargetSubID same as SenderSubID in the operation that produced this
outbound message.

For inbound messages when sending messages via third party firm(service
connection).

� SenderCompID denotes the NGM trader group id or public group id of
service connection.

� SenderSubID is intended for the client side user name of service connection.

� TargetCompID should be set to ”NGM”.

� TargetSubID should be absent.

� OnBehalfOfCompID denotes the NGM trader group id or public group id
of the origin firm.

� OnBehalfOfSubID is intended for the origin client side user name.

For outbound messages(from NGM) when addressing a member via a third
party firm(service connection):

� SenderCompID is set to ”NGM”.

� SenderSubID is absent.

� TargetCompID denotes the NGM trader group id or public group id of
service connection.

� TargetSubID same as SenderSubID in the operation that produced this
outbound message.

� DeliverToCompID same as OnBehalfOfCompID in the operation that pro-
duced this outbound message.

11

General Service Information

� DerliverToSubID same as OnBehalfOfSubID in the operation that pro-
duced this outbound message.

Most messages from the public service are not directed to a specific user and
will have TargetCompID set to ”NGM”.

When the CompID fields denote a NGM trader group id it has the form
<firm>-<trader group>, where <firm> is the marketplace assigned member
code.

When the CompID fields denote a NGM public group id it has the form
PUB-<id>.

The SubID fields are intended for client side user traceability and can be set
to any value. In the case of unsolicited messages TargetCompID and Target-
SubID are set to the trader group and user that last touched the order etc. that
caused the message.

Table 2.1: StandardHeader.

Tag Field Name Type Req Description

34 MsgSeqNum uInt64 Y Message sequence num-
ber.

49 SenderCompID string Y Identifies sender firm
(and trader group).

50 SenderSubID string N Identifies sender user.
56 TargetCompID string Y Identifies target firm (and

trader group).
57 TargetSubID string N Identifies target user.
115 OnBehalfOfCompID string N Identifies sending firm,

used when sending mes-
sages via a third party.

116 OnBehalfOfSubID string N Identifies sending user,
used when sending mes-
sages via a third party.

128 DeliverToCompID string N Identifies target firm,
used when sending
messages via a third
party.

129 DeliverToSubID string N Identifies target user,
used when sending
messages via a third
party.

52 SendingTime uInt64 Y UTC timestamp in mi-
croseconds. Time of orig-
inal message transmis-
sion.

12

2.5 Session Messages

2.4.2 Security Ref

The Security Ref component block is used to identify a security. Securities
(order books) are always identified by a marketplace assigned identifier. This
identifier is, together with other identifiers (e.g. ISIN and symbol), published
in Security Definition Update Report and Security List messages.

Table 2.2: SecurityRef.

Tag Field Name Type Req Description

48 SecurityID string N Security identifier of type
specified in SecurityID-
Source.

22 SecurityIDSource uInt32 N Identifies the class of
SecurityID. ASCII char
enumeration.
’M’=Marketplace-
assigned identifier

2.5 Session Messages

The standard FIX transport is used for maintaining FIX sessions with some
exceptions.

24/7 connectivity is supported but MsgSeqNum is never reset during a con-
nection. This means that SequenceReset with reset is not supported, nor is
exchange of Logon messages during a session (i.e. after the first Logon). The
MsgSeqNum may be reset (to 1) during logon if desired. The MsgSeqNum is
represented as a 64 bit integer.

The NextExpectedSeqNum field is used to resynchronize a FIX session upon
logon. Because of this and due to the fact that TCP is used as the underlying
(reliable) transport protocol the ResendRequest message is not needed nor sup-
ported.

Note that if no Logon message is received within a certain time, the connec-
tion will be closed.

2.5.1 Logon (A)

The Logon message is used to initiate a FIX session. When connecting to NGM
the following values should be set as follows:

HeartBeatInterval 10 seconds.

SenderCompID As with all messages this should be set to the Tradergroup
name (e.g ”FOO-1”).

Username Specifies the unique user to logon (e.g ”FOO-1-1”). The Sender-
Name of the FAST Hello message must be set to the same value.

13

General Service Information

The Logon message is a part of the message recovery mechanism. The Next-
ExpectedSeqNum field is used to resynchronize a FIX session upon logon. By
observing this field each party can detect which messages need to be resent to
the other party.

If the acceptor (the exchange) detects an error/mismatch in the Logon mes-
sage received it replies with a Logout message with any of the following Session-
Status values:

Session state is lost, see Section 2.1.

Message recovery not available, i.e. the initiator need messages too far in
the past to be resent.

NextExpectedSeqNum is too high, i.e. session state is broken. This indi-
cates some kind of error (e.g. software error, human error).

MsgSeqNum is too low, i.e. session state is broken. This indicates some
kind of error (e.g. software error, human error).

Incorrect reset, i.e. sequence number is not set to one when resetting the
session.

If the initiator receives any of these errors from the acceptor or detects an er-
ror/mismatch in the Logon message received it should disconnect and reconnect
with logon reset followed by a full snapshot recovery. The last two SessionStatus
codes indicates some other problem that should also be investigated, but the
same recovery procedure is still valid.

Figure 2.1 shows an example logon scenario. Any messages that need to be
resent are sent directly after the logon messages has been exchanged. The Logon
message with MsgSeqNum=123 is resent as a gap-fill directly after the messages
90-122 have been resent.

Client
(initiator)

Logon
MsgSeqNum=45
NextExpectedSeqNum=90

Market Place
(acceptor)

Logon
MsgSeqNum=123
NextExpectedSeqNum=46

No resend Resend
messages
90-122,123

Next message
is 46

Next message
is 124

Figure 2.1: Logon procedure with automatic retransmission of messages.

If the initiator want to reset the session it can logon with the ResetSeqNum-
Flag set (see figure 2.2). The MsgSeqNum must then also be reset to 1 in the
initiator’s Logon message. The acceptor will also respond with the ResetSe-
qNumFlag set and MsgSeqNum set to 1. From that point on both parties will
continue with sequence number 2.

14

2.5 Session Messages

Client
(initiator)

Logon
MsgSeqNum=1
ResetSeqNumFlag=’Y’
NextExpectedSeqNum=1

Market Place
(acceptor)

Logon
MsgSeqNum=1
ResetSeqNumFlag=’Y’
NextExpectedSeqNum=2

Next message
is 2

Next message
is 2

Figure 2.2: A reset requested by the initiator.

Logon:

� is replied to with a Logon message

� can be rejected with a Logout message, with SessionStatus set to 5 (In-
validUsernameOrPassword), 6 (AccountLocked), 7 (NotAllowed), 100 (His-
toryNotAvailable), 9 (ReceivedMsgSeqNumTooLow), 10 (ReceivedNex-
tExpectedMsgSeqNumTooHigh), 103 (SessionStateLost) or 104 (MsgSe-
qNumNotOne)

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to A

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Logon
message

Logon is sent:

� in reply to a Logon message

Table 2.3: Logon (A).

Tag Field Name Type Req Description

component block
<StandardHeader>

98 EncryptMethod uInt32 Y Method of encryption.
0=None / Other

108 HeartBtInt uInt32 Y Heartbeat interval (sec-
onds).

1137 DefaultApplVerID string Y Valid value:
”FIX50SP2”.

15

General Service Information

Table 2.3: Logon (A).

Tag Field Name Type Req Description

141 ResetSeqNumFlag uInt32 N Indicates both sides of a
FIX session should reset
sequence numbers.
Absence means ’N’.
Boolean (ASCII char
enumeration).
’N’=Don’t reset
’Y’=Reset

789 NextExpectedMsgSeq-
Num

uInt64 Y Message sequence num-
ber gap detection.

553 Username string N
554 Password string N

2.5.2 Logout (5)

The Logout message initiates or confirms the termination of a FIX session. The
logout initiator should wait for the opposite side to respond with a confirming
logout message before disconnecting.

Logout:

� is replied to with a Logout message, with SessionStatus set to 4 (Logout-
Complete)

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to 5

� can be rejected with a Reject message, with SessionRejectReason set to the
reject reason and RefSeqNum set to the sequence number of the Logout
message

Logout is sent:

� in reply to a Logout message, with SessionStatus set to 4 (LogoutCom-
plete)

� to reject a Logon message, with SessionStatus set to 5 (InvalidUsername-
OrPassword), 6 (AccountLocked), 7 (NotAllowed), 100 (HistoryNotAvail-
able), 9 (ReceivedMsgSeqNumTooLow), 10 (ReceivedNextExpectedMs-
gSeqNumTooHigh), 103 (SessionStateLost) or 104 (MsgSeqNumNotOne)

16

2.5 Session Messages

Table 2.4: Logout (5).

Tag Field Name Type Req Description

component block
<StandardHeader>

1409 SessionStatus uInt32 N Session status at time of
logout.
4= Session logout
complete
5= Invalid username or
password
6= Account Locked
7= Logons are not
allowed at this time 9=
Initiators MsgSeqNum is
too low.
10= Initiators NextEx-
pectedMsgSeqNum is too
high.
100= Requested history

is not available.
103= Acceptor has lost
the session state.
104= Initiators MsgSe-
qNum must be equal to
one when resetting the
session.

58 Text string N

2.5.3 TestRequest (1)

The Test Request message is used for requesting a Heartbeat message to establish
that the session is alive. When receiving a Test Request, you should reply with
a Heartbeat with the TestReqID field set to the value contained in the received
Test Request message. Note that Test Request should not be sent unless it’s
necessary, that is, when you haven’t sent any message (not just Test Request
and Heartbeat) for HeartBtInt seconds.

Any message you send is an indication that you’re alive and any message
you receive is an indication that the sender is alive.

TestRequest:

� is replied to with a Heartbeat message, with TestReqID set to (copied
from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to 1

17

General Service Information

� can be rejected with a Reject message, with SessionRejectReason set to the
reject reason and RefSeqNum set to the sequence number of the TestRe-
quest message

TestRequest is sent:

� unsolicited, when you haven’t received any message (not just TestRequest
or Heartbeat messages) from the peer for HeartBtInt seconds.

Table 2.5: TestRequest (1).

Tag Field Name Type Req Description

component block
<StandardHeader>

112 TestReqID string Y

2.5.4 Heartbeat (0)

Heartbeat sent either unsolicited or as a reply to a Test Request message. When
receiving a Heartbeat, you should not reply to it. This also means that you won’t
receive a reply from the peer after sending a Heartbeat. Note that Heartbeat
shouldn’t be sent unless necessary, that is, when you haven’t sent any message
(not just Test Request and Heartbeat) for HeartBtInt seconds.

Any message you send is an indication that you’re alive and any message
you receive is an indication that the sender is alive.

Heartbeat is sent:

� unsolicited, when you haven’t sent any message (not just TestRequest or
Heartbeat messages) to the peer for HeartBtInt seconds.

� in reply to a TestRequest message, with TestReqID set to (copied from)
the value in the request message

Table 2.6: Heartbeat (0).

Tag Field Name Type Req Description

component block
<StandardHeader>

112 TestReqID string C Conditionally required
when this is a response
to a TestRequest.

18

2.5 Session Messages

2.5.5 SequenceReset (4)

The Sequence Reset message is only used for sending gap fills during message
retransmission.

Table 2.7: SequenceReset (4).

Tag Field Name Type Req Description

component block
<StandardHeader>

123 GapFillFlag uInt32 N ASCII char enumeration.
’Y’=Gap fill

36 NewSeqNo uInt64 Y Next sequence number.

2.5.6 Reject (3)

Session level reject message.

Reject is sent:

� to reject any message, with SessionRejectReason set to the reject reason
and RefSeqNum set to the sequence number of the rejected message

Table 2.8: Reject (3).

Tag Field Name Type Req Description

component block
<StandardHeader>

45 RefSeqNum uInt64 Y MsgSeqNum of the re-
jected message.

372 RefMsgType string N The FIX type of the mes-
sage being referenced.

371 RefTagID uInt32 N The FIX field being refer-
enced.

373 SessionRejectReason uInt32 N 1=Required Tag Missing
5=Value is incorrect (out
of range) for this tag
6=Incorrect data format
for value
9=CompID problem
10=SendingTime
Accuracy Problem
11=Invalid MsgType
14=Tag specified out of
required order
99=Other

19

General Service Information

Table 2.8: Reject (3).

Tag Field Name Type Req Description

58 Text string N Error message.

2.6 General Application Level Messages

2.6.1 Business Message Reject (j)

The Business Message Reject message can reject an application-level message
which fulfills session level rules and cannot be rejected via any other means.

BusinessMessageReject is sent:

� to reject any message, with BusinessRejectReason set to the reject reason
and RefMsgType set to MsgType of the rejected message

Table 2.9: BusinessMessageReject (j).

Tag Field Name Type Req Description

component block
<StandardHeader>

372 RefMsgType string Y The MsgType (35) of the
FIX message being refer-
enced.

379 BusinessRejectRefID string N The value of the business-
level ”ID” field on the
message being referenced.

380 BusinessRejectReason uInt32 Y Code to identify reason
for a Business Message
Reject message.
0=Other
1=Unknown ID
2=Unknown Security
3=Unknown Message
Type
4=Application not
available
5=Conditionally required
field missing
6=Not Authorized
7=DeliverTo firm not
available at this time
18=Invalid price incre-
ment

20

2.6 General Application Level Messages

Table 2.9: BusinessMessageReject (j).

Tag Field Name Type Req Description

58 Text string N Where possible, message
to explain reason for re-
jection

21

General Service Information

22

Chapter 3

Private Service

The private service is used for sending trading operations to and receiving trad-
ing related updates from the exchange. The traffic is of a mixed interactive and
non-interactive “multicast” nature. Interactive since information is sent from
the exchange in direct response to an operation from the user. Non-interactive
since information is also sent spontaneously (not in direct response to a request
from the user) from the exchange. Multicast since the same information is sent
to a group of users of the service rather than a specific user (drop copies).

Examples of interactive traffic include creation and management of orders
and registration of manual trades. Examples of non-interactive traffic include
trades (which happen “spontaneously” seen from the perspective of the passive
party). An example of multicast traffic includes order updates for orders created
by another user in the same trader group. An example of non-multicast traffic
is replies to snapshot requests.

As a consequence of the non-interactive and multicast properties of the ser-
vice, data (typically trades) is pushed to a user’s session even when a user is
offline. No subscription requests are required nor supported by the service.
Instead, a user needs to synchronize with the service when logging on, either
on the session level (by requesting retransmission of lost messages) or on the
application level (by requesting snapshots).

3.1 User Model

The user model in the private service is divided into three levels (see figure
3.1); organization, trader group and user. Within the organization level orders
are matched as internal trades. An organization can have one or more trader
groups, which in turn can have one or more users.

23

Private Service

Trades within an organization
are considered internal.Organization

Ownership of orders, trades etc.
lies on this level.Trader Group

Session level (login, etc.) and
snapshots.User

Figure 3.1: User model in the private service.

Ownership of orders and trades lies on the trader group level, and changes
to this data is sent to all users within the trader group. This means that users
within the same trader group can see and modify each other’s orders and trades,
and receive the result of each others operations.

Each user has a separate FIX session to the private service. A snapshot
request will only affect the user that requested it.

For example a backup system (hot standby) should be part of the same
trader group as the primary system, and will receive drop copies of the result
of the operations that the primary system sends to the exchange.

For example if an organization has two different systems, e.g. one for quota-
tion and another for client orders, they can be put into different trading groups
to minimize interference of each other. They will still benefit from internal
trades as long as they are part of the same organization.

3.2 Action on Connection Loss

The trading system has a mechanism for handling “unmanaged orders” (and
quotes) when a user loses its connection. The mechanism is used to ensure that
the organization does not end up in a situation where the market is changing
rapidly while the organization has orders or quotes in the market that they
are not able to control, because of a network problem, or a hardware crash for
example.

The mechanism is activated if a user is disconnected for any reason (except
logging out normally) and the disconnected user was the only logged in user
in its trader group with order (or quote) managing privileges, which is decided
from the filtering settings for the user.

The action performed when the mechanism is activated can be configured
individually for each order (see ExecInst in the Order component block) and
be set to suspend, delete or do nothing with the order. The action for quotes
is always delete. The action is only executed if the security is ready to trade
(open).

24

3.3 Full Snapshot Recovery

Note that if a client stops sending heartbeat messages as requested it will be
disconnected which in turn can trigger the action on connection loss mechanism.

3.3 Full Snapshot Recovery

On the private service snapshots can be requested for the following:

Orders See the Order Mass Status Request message in section 3.7.8.

Quotes See the Quote Status Request message in section 3.8.6. An alternative
is to cancel all quotes instead of requesting a snapshot. However, the time
priority of quotes will be lost and all other users within the same trader
group will be affected by the quote cancelations.

Trades See the Trade Capture Report Request message in section 3.9.6.

3.4 Provider Connection

A FIX connection can serve as a provider connection ’on behalf of ’ a member
who does not have its’ own connection to NGM. One single provider connection
may serve multiple members.

The provider connection will use the fields OnBehalfOfCompID and OnBe-
halfOfSubID to distinguish the serviced organisations and users when sending
messages to the NGM exchange. Outbound messages will contain information in
the fields DeliverToCompID and DeliverToSubID which referes to OnBehalfOf
fields of the inbound messages.

A provider may only send orders and trades on behalf of another member,
thus quotes are not supported.

Note that a provider account needs explicit authorization by NGM for each
member and user it will serve as OnBehalfOf.

3.4.1 Supported messages

Inbound messages allowed to use OnBehalfOfCompID and OnBehalfOfSubID:

� NewOrderSingle

� OrderCancelReplaceRequest

� OrderCancelRequest

� TradeCaptureReport

Outbound messages using DeliverToCompID and DeliverToSubID fields:

� ExecutionReport

� TradeCaptureReport

� OrderCancelReject

� BusinessMessageReject

25

Private Service

3.5 Message Overview

The following messages can be sent/received by the client to/from the private
service. Depending on the filter rules only a subset of the following messages
may be sent/received.

Table 3.1: Message overview.

Message Class All? Read-
only?

Snap-
shot-
only?

NewOrderSingle Order send
OrderCancelReplaceRequest Order send
OrderCancelRequest Order send
ExecutionReport Order recv recv recv
OrderCancelReject Order recv recv
OrderMassStatusRequest Order send send send
Quote Quote send
QuoteCancel Quote send
QuoteStatusReport Quote recv recv recv
QuoteRequest Quote recv recv
QuoteStatusRequest Quote send send send
TradeCaptureReport Trade send

recv
recv recv

TradeCaptureReportAck Trade recv recv
TradeCaptureReportRequest Trade send send send
TradeCaptureReportRequestAck Trade recv recv recv
UserSecurityStatusUpdateRequest Security

status
UserSecurityStatusUpdateResponse Security

status

3.5.1 Filtering Examples

The following are examples of filter rules that could suit certain systems that
do not wish to receive all data.

Back-office system that only need drop copies of trades from other users in
the same trader group:
Order=none, Quote=none, Trade=read-only.

Mass quoting system that do not need to see (client) orders nor submit man-
ual trades:
Order=none, Quote=all, Trade=read-only.

Client order system that only manage client orders (not quotes) and that do
submit manual trades:
Order=all, Quote=none, Trade=all.

26

3.6 Parties Information

3.6 Parties Information

Orders, quotes and trades contains parties information. However, not all com-
binations of parties are used in all situations, see table below. Party roles used
for order and quotes are also copied into Trade Capture Reports when orders
or quotes are matched.

Also see chapter A.2.

Table 3.2: Usage of parties information.

PartyRole Usage PartyID-
Source

Party-
Role-
Qual?

Party-
SubId?

ClientID (3) Order Short (P) Y N
Executing trader (12) Order/Quote Short (P) Y N
Investment decision
maker (122)

Order/Quote Short (P) Y N

Entering Firm (7) From exchange Custom (D) N Y
Contra Firm (17) Trade Custom (D) N Y
Buyer/Seller (27) Trade Custom (D) N Y

3.6.1 Parties Component Block

This component block is used to specify parties.

Table 3.3: Parties.

Tag Field Name Type Req Description

453 PartyIDs sequence N
452 →PartyRole uInt32 Y 3=ClientID

12=Executing trader
122=Investment decision
maker
7=Entering Firm
(identifies the provider in
an onBehalfOf scenario)
17=Contra Firm
27=Buyer/Seller

2376 →PartyRoleQualifier uInt32 N 22=Algorithm
23=Firm or legalEntity
24=Natural person

27

Private Service

Table 3.3: Parties.

Tag Field Name Type Req Description

447 →PartyIDSource uInt32 Y ASCII char enumeration.
’D’=Proprietary/custom
code (marketplace as-
signed member id)
’P’=Short code identi-
fier, represented as an
unsigned 64-bit integer.
Short code translation
must be reported outside
protocol

448 →PartyID string Y
802 →PartySubIDs sequence N
803 →→PartySubIDType uInt32 Y Used to indicate the

counter party trader ID
in TradeCaptureReport
when
TradeHandlingInstr=’3’.
Also used to further
identify entering firm.
2=Person
3=System (trader group)

523 →→PartySubID string Y

3.7 Order Messages

An order can be identified in a number of ways:

ClOrdID Client assigned identifier (mandatory). It must be unique within a
security and trader group. This identifier must change each time the client
updates the order and thus denotes a revision of the order.

OrderID Market place assigned identifier which does not change during the
lifetime of the order.

SecondaryOrderID Reference to the current MDEntryID in the market data
which identifies the order. This identifier is only present for orders that
are visible in the market data and it may change whenever the order is
seen as a new order in the market data (e.g. refills of iceberg orders).

Either OrigClOrdID or OrderID is required for order modification and dele-
tion. Usage of OrigClOrdID allows for chaining of order operations.

3.7.1 Order Component Block

This component block is used to define an order.

28

3.7 Order Messages

Table 3.4: Order.

Tag Field Name Type Req Description

54 Side uInt32 Y ASCII char enumeration.
’1’=buy
’2’=sell

40 OrdType uInt32 C ASCII char enumeration.
’1’=market
’2’=limit
Required in
NewOrderSingle.
Required in OrderCancel-
ReplaceRequest.

44 Price decimal N Required for limit orders.
38 OrderQty decimal C Required in

NewOrderSingle.
Required in OrderCancel-
ReplaceRequest.

1138 DisplayQty decimal N Displayed quantity on
iceberg/reserve order.

1083 DisplayWhen uInt32 N Instructs when to refresh
DisplayQty. ASCII char
enumeration.
’1’=Immediate (after
each fill)
’2’=Exhaust (when Dis-
playQty = 0)

1084 DisplayMethod uInt32 N Defines what value to
use in DisplayQty. If not
specified the default
DisplayMethod is ’1’.
ASCII char enumeration.
’1’=Initial (use original
DisplayQty)
’2’=New (use
RefreshQty)
’3’=Random (randomize
value)

1088 RefreshQty decimal C Conditionally required
when DisplayMethod is
’2’ (New).

1085 DisplayLowQty decimal C Conditionally required
when DisplayMethod is
’3’ (Random).

1086 DisplayHighQty decimal C Conditionally required
when DisplayMethod is
’3’ (Random).

29

Private Service

Table 3.4: Order.

Tag Field Name Type Req Description

1087 DisplayMinIncr decimal N Can be used to spec-
ify larger increments than
the standard increment
provided by the market
(round lot size) when Dis-
playMethod=’3’.

59 TimeInForce uInt32 N Absence means ’0’.
ASCII char enumeration.
’0’=Session
’1’=Good Till
Cancel(GTC)
’3’=Immediate Or
Cancel (IOC)
’4’=Fill Or Kill (FOK)
’6’=Good Till Date
(GTD)

126 ExpireTime uInt64 C UTC timestamp.
Conditionally required
when TimeInForce is ’6’
(Good Till Date).

60 TransactTime uInt64 N UTC timestamp this or-
der request was created,
updated or cancelled.

1 Account string N Account information that
will be echoed back.

18 ExecInst string N Instructions for order
handling (separated with
spaces). Valid values:
S=Suspend
o=Cancel on connection
loss (mutually exclusive
with p)
p=Suspend on
connection loss (mutually
exclusive with o)

529 OrderRestrictions string N Multiple char value
(delimited with space).
Restrictions associated
with an order.
B=Issuer Holding
C=Issue Price
Stabilization

30

3.7 Order Messages

3.7.2 Order Attributes Grp Component Block

This component block defines additional order attributes.

Table 3.5: OrderAttributeGrp.

Tag Field Name Type Req Description

2593 OrderAttributes sequence N
2594 →OrderAttributeType uInt32 Y 2=Liquidity provision

activity order (when
together with
OrderAttributeValue=Y,
it signifies that the order
was submitted ”as part
of market making
strategy pursuant to
articles 17 and 18 of
Directive 2014/65/EU”).
3=Risk reduction order
(when together with
OrderAttributeValue=Y,
it signifies that the
commodity derivative
order is a transation ”to
reduce risk in an
objectively measurable
way in accordance with
Article 57 of Directive
2014/65/EU”).
5=Systematic
internalizer order (when
together with
OrderAttributeValue=Y,
it signifies that the order
is submitted by a
systematic internalizer).

2595 →OrderAttribute-
Value

string Y The value associated
with the attribute type
specified in
OrderAttributeType.
Must be ”Y”.

3.7.3 New Order Single (D)

The New Order Single message is used to create a new order. The response is
always an Execution Report, including rejects.

31

Private Service

NewOrderSingle:

� is replied to with an ExecutionReport message, with ClOrdID set to (copied
from) the value in the request message

� can be rejected with an ExecutionReport message, with ExecType set to
’8’ (Rejected) and ClOrdID set to (copied from) the value in the request
message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to D

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the
NewOrderSingle message

Table 3.6: NewOrderSingle (D).

Tag Field Name Type Req Description

component block
<StandardHeader>

11 ClOrdID string Y
component block <SecurityRef> Security identification.
component block <Order>

528 OrderCapacity uInt32 N Designates the capacity
of the firm placing the
order. Absence means
’R’.
’P’=Principal (Deal)
’R’=Riskless principal
(Matched)
’A’=Agency (Any other
capacity)

1724 OrderOrigination uInt32 N Identifies the origin of
the order. Absence
means non DEA.
’5’=Order received from a
direct access or sponsored
access customer

component block
<OrderAttributeGrp>
component block <Parties>

32

3.7 Order Messages

3.7.4 Order Cancel/Replace Request (G)

The Order Cancel/Replace Request (a.k.a. Order Modification Request) is used
to replace an existing order (i.e. not filled or removed). Side or security cannot
be changed in an order.

The modification is replied to with an Execution Report if successful. Oth-
erwise an Order Cancel Reject message is sent.

OrderCancelReplaceRequest:

� is replied to with an ExecutionReport message, with ClOrdID set to (copied
from) the value in the request message

� can be rejected with an OrderCancelReject message, with ClOrdID set to
(copied from) the value in the request message and CxlRejReason set to
the reject reason

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to G

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Or-
derCancelReplaceRequest message

Table 3.7: OrderCancelReplaceRequest (G).

Tag Field Name Type Req Description

component block
<StandardHeader>

37 OrderID string C Conditionally required
when OrigClOrdID is
absent.

41 OrigClOrdID string C Conditionally required
when OrderID is absent.

11 ClOrdID string Y
component block <SecurityRef> Security identification.

Must match original
order.

component block <Order> Side must match original
order.

3.7.5 Order Cancel Request (F)

The Order Cancel Request is used to cancel an existing order.
The cancelation is replied to with an Execution Report if successful. Other-

wise an Order Cancel Reject message is sent.

OrderCancelRequest:

33

Private Service

� is replied to with an ExecutionReport message, with ClOrdID set to (copied
from) the value in the request message

� can be rejected with an OrderCancelReject message, with ClOrdID set to
(copied from) the value in the request message and CxlRejReason set to
the reject reason

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to F

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Or-
derCancelRequest message

Table 3.8: OrderCancelRequest (F).

Tag Field Name Type Req Description

component block
<StandardHeader>

37 OrderID string C Conditionally required
when OrigClOrdID is
absent.

41 OrigClOrdID string C Conditionally required
when OrderID is absent.

11 ClOrdID string Y
component block <SecurityRef> Security identification.

Must match original
order.

60 TransactTime uInt64 Y UTC timestamp this or-
der was cancelled.

3.7.6 Execution Report (8)

If an order is (partially) filled upon hitting the order book only one Execution
Report will be sent, with execution type New and order status (Partially) Filled.
For partially filled IOC (Immediate or cancel) and FoK (Fill or kill) orders that
are executed directly, one Execution Report will be generated with execution
type New and order status Cancelled where the field CumQty holds the partial
fill volume.

When WorkingIndicator is set to ’N’, the order operation has been received
but not yet executed. In this case any (partially) fills are delayed until the
WorkingIndicator is changed to ’Y’. An order with WorkingIndicator set to ’N’
can be modified and deleted as normal.

In case of multiple fills of an order in a single match operation, only one
Execution Report will be sent for all partial fills. Pending order states are not
used. Also the Done for day state is never sent for orders, since this can be
concluded by observing the security status.

34

3.7 Order Messages

In case of a canceled trade, any orders that were part of the trade will not
be restated. The trade cancel is notified only through a Trade Capture Report
message, no Execution Report message is sent.

ExecutionReport is sent:

� unsolicited, when the order is updated, for example when it is part of a
matching operation or expires

� in reply to a NewOrderSingle message, with ClOrdID set to (copied from)
the value in the request message

� to reject a NewOrderSingle message, with ExecType set to ’8’ (Rejected)
and ClOrdID set to (copied from) the value in the request message

� in reply to an OrderCancelReplaceRequest message, with ClOrdID set to
(copied from) the value in the request message

� in reply to an OrderCancelRequest message, with ClOrdID set to (copied
from) the value in the request message

� in reply to an OrderMassStatusRequest message, with MassStatusReqID
set to (copied from) the value in the request message and ExecType set
to ’I’ (OrderStatus)

Table 3.9: ExecutionReport (8).

Tag Field Name Type Req Description

component block
<StandardHeader>

17 ExecID string Y Unique identifier of ex-
ecution message, or ”0”
for ExecType=’I’ (Order
Status).

150 ExecType uInt32 Y ASCII char enumeration.
’0’=New
’4’=Canceled
’5’=Replaced
’8’=Rejected
’9’=Suspended
’C’=Expired
’F’=Trade (partial fill or
fill)
’I’=Order Status

component block <SecurityRef> Security identification.
component block <Order>

37 OrderID string Y
278 MDEntryID string N Reference to the MDEn-

tryID of this order in the
market data.

35

Private Service

Table 3.9: ExecutionReport (8).

Tag Field Name Type Req Description

11 ClOrdID string N Conditionally required
when this message is a
response to a submitted
order.

41 OrigClOrdID string N Conditionally required
when not unsolicited and
ExecType is ’4’ (Can-
celed) or ’5’ (Replaced).

39 OrdStatus uInt32 Y ASCII char enumeration.
’0’=New
’1’=Partially filled
’2’=Filled
’4’=Canceled
’8’=Rejected
’9’=Suspended
’C’=Expired

636 WorkingIndicator uInt32 N Indicates if the order is
currently being worked.
Applicable for OrdStatus
= ”New” and OrdStatus
= ”Partially filled”.
Absense means ’Y’.
ASCII char enumeration
(boolean).
’Y’=Order is currently
being worked.
’N’=Order has been ac-
cepted but not yet in a
working state.

151 LeavesQty decimal Y
14 CumQty decimal Y
1093 LotType uInt32 N Defines the lot type

assigned to the order.
ASCII char enumeration.
’1’=Odd Lot
’2’=Round Lot

6 AvgPx decimal N Average traded price.

36

3.7 Order Messages

Table 3.9: ExecutionReport (8).

Tag Field Name Type Req Description

103 OrdRejReason uInt32 N Code to identify reason
for order rejection.
1=Unknown symbol
2=Exchange closed
5=Unknown order
6=Duplicate Order (e.g.
dupe ClOrdID)
18=Invalid price
increment
99=Other
100=Orders not allowed
in knockout or knockout
soft state
101=Buy orders not
allowed in knockout
buyback state
102=Suspended orders
not allowed in knockout
buyback state 103=Buy
orders not allowed in
buyback state
104=Sell orders not
allowed in distribution
state
105=Suspended orders
not allowed in
distribution state
106=Order not allowed
to breach circuit breaker
107=Order breached pre
trade control price limit
108=Order breached pre
trade control value limit
109=Value less than
reserve order minimum
value. 110=Reserve order
not allowed. 111=Or-
der breached pre trade
control volume limit
112=Order for this spe-
cific instrument and/or
member is blocked by a
killswitch

37

Private Service

Table 3.9: ExecutionReport (8).

Tag Field Name Type Req Description

378 ExecRestatement-
Reason

uInt32 N Code to identify reason
for an Execution Report
message sent when
communicating an
unsolicited cancel.
0=GT corporate action
99=Other

20028 OrderPriority uInt64 N Indicates the priority of
the order in the order-
book in comparison to
other orders on the same
level. Higher value means
lower priority. Custom
field.

528 OrderCapacity uInt32 N Designates the capacity
of the firm placing the
order.
’P’=Principal (Deal)
’R’=Riskless principal
(Matched)
’A’=Agency (Any other
capacity)

1724 OrderOrigination uInt32 N Identifies the origin of
the order. Absence
means non DEA.
’5’=Order received from a
direct access or sponsored
access customer

component block
<OrderAttributeGrp>
component block <Parties>

584 MassStatusReqID string N Value assigned by issuer
of Mass Status Request to
uniquely identify the re-
quest.

912 LastRptRequested uInt32 N Indicates that this is the
last Execution Report
which will be returned as
a result of the request.
ASCII char enumeration
(boolean).
’N’=Not Last Message
’Y’=Last Message

58 Text string N Error message.

38

3.7 Order Messages

3.7.7 Order Cancel Reject (9)

This message is sent in response to Order Cancel (Replace) Request in case of
an error.

OrderCancelReject is sent:

� to reject an OrderCancelRequest message, with ClOrdID set to (copied
from) the value in the request message and CxlRejReason set to the reject
reason

� to reject an OrderCancelReplaceRequest message, with ClOrdID set to
(copied from) the value in the request message and CxlRejReason set to
the reject reason

Table 3.10: OrderCancelReject (9).

Tag Field Name Type Req Description

component block
<StandardHeader>

37 OrderID string Y If CxlRejRea-
son=Unknown Order,
value is ”[N/A]”.

41 OrigClOrdID string Y ClOrdId of the order
that could not be can-
celed/replaced.

11 ClOrdID string Y Same as in the request.
39 OrdStatus uInt32 Y If

CxlRejReason=Unknown
Order, value is ’8’.
ASCII char enumeration.
’0’=New
’1’=Partially filled
’2’=Filled
’3’=Done for day
’4’=Canceled
’8’=Rejected
’9’=Suspended
’C’=Expired

434 CxlRejResponseTo uInt32 Y Identifies type of
message this reject is in
response to. ASCII char
enumeration.
’1’=Order cancel request
’2’=Order cancel/replace
request

39

Private Service

Table 3.10: OrderCancelReject (9).

Tag Field Name Type Req Description

102 CxlRejReason uInt32 N 1=Unknown order
6=Duplicate ClOrdID
(11) received
18=Invalid price
increment
99=Other 100=Orders
not allowed in knockout
or knockout soft state
101=Buy orders not
allowed in knockout
buyback state
102=Suspended orders
not allowed in knockout
buyback state 103=Buy
orders not allowed in
buyback state
104=Sell orders not
allowed in distribution
state
105=Suspended orders
not allowed in
distribution state
107=Order breached pre
trade control price limit
108=Order breached pre
trade control value limit
109=Value less than
reserve order minimum
value. 110=Reserve order
not allowed. 111=Or-
der breached pre trade
control volume limit
112=Order for this spe-
cific instrument and/or
member is blocked by a
killswitch

58 Text string N Error message.

3.7.8 Order Mass Status Request (AF)

Status for all orders owned by the requester’s trader group can be requested
with the Order Mass Status Request message where MassStatusReqType is set
to 7 (Status for all orders). This message will be replied to with one or more
Execution Report messages with ExecType set to ’I’ (Order Status). The last
Execution Report will always be indicated with LastRptRequested field set to

40

3.8 Quote Messages

’Y’. Note that a dummy Execution Report with OrderID set to ”[N/A]” and
LastRptRequested field set to ’Y’ may be sent as last message to indicate the
request has been processed (for example as a reply with no orders).

In the event of a malformed request, the response will be a Business Message
Reject message.

OrderMassStatusRequest:

� is replied to with an ExecutionReport message, with MassStatusReqID set
to (copied from) the value in the request message and ExecType set to ’I’
(OrderStatus)

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to AF

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Or-
derMassStatusRequest message

Table 3.11: OrderMassStatusRequest (AF).

Tag Field Name Type Req Description

component block
<StandardHeader>

584 MassStatusReqID string Y
585 MassStatusReqType uInt32 Y 7=Status for all orders

3.8 Quote Messages

A quote can be identified in a number of ways:

QuoteMsgID Client assigned identifier (mandatory). It must be unique within
a security and trader group. This identifier must change each time the
client updates the quote and thus denotes a revision of the quote.

QuoteID Market place assigned identifier which does not change during the
lifetime of the quote.

BidMDEntryID and OfferMDEntryID Reference to the current MDEn-
tryID in the market data which identifies the bid/offer. This identifier
is only present for quotes that are visible in the market data and it may
change whenever the quote is seen as a new bid/offer in the market data
(e.g. price changes).

Either OrigQuoteMsgID or QuoteID is required for quote modification and
deletion. Usage of OrigQuoteMsgID allows for chaining of quote operations.

All quotes are tradeable, meaning that they are matched against other orders
and quotes in the order book.

41

Private Service

Zero spread (same bid and offer prices) quotes are supported and will not
result in a trade between the sides of the same quote. Crossing prices are
however not supported.

Single side quotes are supported by leaving the opposite price field absent
(null), e.g. if BidPx is present while OfferPx then the quote only have a buy
side.

The Quote and Quote Status Report messages have been extended with To-
talBidSize and TotalOfferSize. The TotalBidSize is the total (original) bid vol-
ume while BidSize is the available bid volume. This means that TotalBidSize =
BidSize + cumulative traded bid volume (including any canceled trades). The
volume in tradeable quotes are updated using TotalBidSize and TotalOfferSize.

In case of a (partial) fill of a quote a Quote Status Report is sent with an
updated available volume. No ExecutionReport is sent for a quote fill. However,
a Trade Capture Report is always sent for any trades that occur. A completely
filled quote is deleted.

All quotes are automatically deleted when the trading session ends (Securi-
tyTradingStatus is post open).

During financial status substate Buyback the exchange accepts double sided
quotes from the market maker, however the sell side of the quote is ignored.
This is reflected in the Quote Status Report where price (OfferPx) and volume
(TotalOfferSize) of the sell side will be cleared.

3.8.1 Quote Grp Component Block

This component block defines a quote.

Table 3.12: QuoteGrp.

Tag Field Name Type Req Description

132 BidPx decimal C Bid price. Either BidPx,
OfferPx or both must be
specified.
Conditionally required in
Quote when OfferPx is
absent.
Conditionally required
in QuoteStatusReport
when OfferPx is absent,
QuoteStatus is not 4
(Canceled All) or 5 (Re-
jected) and SecurityID is
not absent.

42

3.8 Quote Messages

Table 3.12: QuoteGrp.

Tag Field Name Type Req Description

133 OfferPx decimal C Offer price. Either
BidPx, OfferPx or both
must be specified.
Conditionally required in
Quote when BidPx is
absent.
Conditionally required in
QuoteStatusReport when
BidPx is absent, QuoteS-
tatus is not 4 (Canceled
All) or 5 (Rejected) and
SecurityID is not absent.

1749 TotalBidSize decimal N Specifies the total bid
size.

1750 TotalOfferSize decimal N Specifies the total ask
size.

60 TransactTime uInt64 N UTC timestamp this
quote was created,
updated or cancelled.

1 Account string N Account information that
will be echoed back.

537 QuoteType uInt32 N Identifies the type of
quote. Absense means
restriced tradeable. Valid
values:
1=Tradeable.
4=Initially tradeable
(quote validation).

529 OrderRestrictions string N Multiple char value
(delimited with space).
Restrictions associated
with an order.
B=Issuer Holding
C=Issue Price
Stabilization

component block <Parties>

3.8.2 Quote (S)

The Quote message is used for sending new quotes, updating previous quotes
and replying to quote requests.

The response, depending on the QuoteResponseLevel, is:

43

Private Service

No ack (0) No response.

Negative ack only (1) A Quote Status Report with QuoteStatus = 5 (re-
jected) in case of a reject.

Ack each message (2) One Quote Status Report with QuoteStatus = 0 (ac-
cepted), 21 (traded), 22 (traded and removed) or 5 (rejected).

Summary ack (3) Not applicable.

Only Quote Status Report messages with QuoteStatus = 0 (accepted) is consid-
ered an acknowledgement, meaning quotes that immediately becomes (partially)
filled will always generate a Quote Status Report. When a new quote with the
quote validation mechanism enabled is entered (QuoteType = 4) or an existing
quote is modified to QuoteType = 4, the value of QuoteResponseLevel is ignored
and is always considered to be 2. This exception is to make sure that the client
receives the QuoteID that is needed to reply to QuoteRequest messages.

Quote:

� is replied to with a QuoteStatusReport message, with QuoteMsgID set to
(copied from) the value in the request message

� can be rejected with a QuoteStatusReport message, with QuoteMsgID set
to (copied from) the value in the request message and QuoteStatus set to
5 (Rejected)

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to S

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Quote
message

Table 3.13: Quote (S).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef>

131 QuoteReqID string C Conditionally required
when quote is in response
to a QuoteRequest
message.

117 QuoteID string C Quote identifier assigned
by the exchange.
Conditionally required
when modifying a quote
and OrigQuoteMsgID is
absent.

44

3.8 Quote Messages

Table 3.13: Quote (S).

Tag Field Name Type Req Description

1166 QuoteMsgID string Y Unique client-assigned
identifier for the (replace-
ment) quote.

20018 OrigQuoteMsgID string C Reference to previous
QuoteMsgID in case of
modification. Custom
field.
Conditionally required
when modifying a quote
and QuoteID is absent.

301 QuoteResponseLevel uInt32 N Level of response
requested. Absence
means 2.
0=No Acknowledgement
1=Acknowledge only
negative or erroneous
quotes
2=Acknowledge each
quote message

component block <QuoteGrp>

3.8.3 Quote Status Report (AI)

The Quote Status Report message is used for replying to quote operations and for
sending unsolicited updates of the available volume in case a quote is (partially)
filled. Quote status reports in response to an operation can be controlled by
setting the QuoteResponseLevel field, while unsolicited reports are always sent.

The following list explains what values the QuoteStatus field will have when
a quote is deleted from the system:

User cancel Canceled (17)

Timeout on Quote Request Expired (7)

Security enters Post Open Expired (7)

Admin delete Removed From Market (6)

Security enters Trade Halt Removed From Market (6)

Security enters any knock out substate Removed From Market (6)

Security leaves knock out buyback Removed From Market (6)

Action on Connection Loss Removed From Market (6)

All volume of the Quote is matched Traded and removed (22)

45

Private Service

QuoteStatusReport is sent:

� unsolicited, when the quote is updated, for example when it is part of a
matching operation or expires

� in reply to a Quote message, with QuoteMsgID set to (copied from) the
value in the request message

� to reject a Quote message, with QuoteMsgID set to (copied from) the
value in the request message and QuoteStatus set to 5 (Rejected)

� in reply to a QuoteCancel message, with QuoteStatus set to 4 (Can-
celedAll) or 17 (Canceled) and QuoteMsgID set to (copied from) the value
in the request message

� to reject a QuoteCancel message, with QuoteStatus set to 5 (Rejected)
and QuoteMsgID set to (copied from) the value in the request message

� in reply to a QuoteStatusRequest message, with QuoteStatus set to 8
(Query) and QuoteStatusReqID set to (copied from) the value in the re-
quest message

Table 3.14: QuoteStatusReport (AI).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef>

117 QuoteID string N Quote identifier.
1166 QuoteMsgID string N Maps to QuoteMsgID of

a single Quote.
20018 OrigQuoteMsgID string N Maps to OrigQuoteMs-

gID of a single Quote.
Custom field.

649 QuoteStatusReqID string N
297 QuoteStatus uInt32 Y The status of the Quote

Status Report.
0=Accepted
4=Canceled All
5=Rejected
6=Removed From
Market
7=Expired
8=Query
17=Canceled
21=Traded
22=Traded and removed
(both sides)

46

3.8 Quote Messages

Table 3.14: QuoteStatusReport (AI).

Tag Field Name Type Req Description

300 QuoteRejectReason uInt32 N Reason quote was
rejected.
1=Unknown Symbol
(security)
2=Exchange (Security)
closed
5=Unknown Quote
6=Duplicate Quote
7=Invalid bid/ask spread
8=Invalid price
11=Quote Locked -
Unable to
Update/Cancel (Missing
QuoteReqID)
99=Other
100=Not authorized to
quote security with
Quote Validation
101=Duplicate quote
with Quote Validation
102=Quotes not allowed
in knockout or knockout
soft state
103=Not authorized to
quote security in
knockout buyback state
104=Sell quotes not
allowed in knockout
buyback state
105=Not authorized to
quote security in
distribution state
106=Buy quotes not
allowed in distribution
state
107=Not authorized to
quote security in
buyback state
108=Sell quotes not
allowed in buyback state
109=Quote breached pre
trade control price limit
110=Quote breached pre
trade control value limit
111=Quote breached
pre trade control vol-
ume limit 112=Quote
for this specific instru-
ment and/or member is
blocked by a killswitch

47

Private Service

Table 3.14: QuoteStatusReport (AI).

Tag Field Name Type Req Description

636 WorkingIndicator uInt32 N Indicates if the quote is
currently being worked.
Applicable when
QuoteType is not 4.
Absence means ’Y’.
ASCII char enumeration
(boolean). Field added.
’Y’=Order is currently
being worked.
’N’=Order has been ac-
cepted but not yet in a
working state.

1745 BidMDEntryID string N The MDEntryID of the
bid side in the market
data.

1746 OfferMDEntryID string N The MDEntryID of the
offer side in the market
data.

134 BidSize decimal N Specifies the available bid
size.

135 OfferSize decimal N Specifies the available ask
size.

20029 BidPriority uInt64 N Indicates the priority of
the bid in the order-
book in comparison to
other orders and quotes
on the same level. Higher
value means lower prior-
ity. Custom field.

20030 OfferPriority uInt64 N Indicates the priority of
the offer in the order-
book in comparison to
other orders and quotes
on the same level. Higher
value means lower prior-
ity. Custom field.

component block <QuoteGrp>
912 LastRptRequested uInt32 N Indicates that this is the

last report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
Field added.
’N’=Not Last Message
’Y’=Last Message

58 Text string N Error message.

48

3.8 Quote Messages

3.8.4 Quote Cancel (Z)

The Quote Cancel message is used for canceling a single quote, all quotes for a
single security or all quotes.

The response, depending on the QuoteResponseLevel, is:

No ack (0) No response.

Negative ack only (1) A Quote Status Report with QuoteStatus = 5 (re-
jected) in case of a reject.

Ack each message (2) If canceling a single quote, one Quote Status Report is
sent with QuoteStatus = 17 (canceled) or 5 (rejected). If canceling multiple
quotes, then one Quote Status Report with QuoteStatus = 4 (canceled all)
or 5 (rejected) is sent for the operation itself after the reports for each
canceled quote where QuoteStatus = 17 (canceled).

Summary ack (3) Only applicable for cancel multiple quotes. One Quote
Status Report with QuoteStatus = 4 (canceled all) or 5 (rejected) is sent.

QuoteCancel:

� is replied to with a QuoteStatusReport message, with QuoteStatus set to
4 (CanceledAll) or 17 (Canceled) and QuoteMsgID set to (copied from)
the value in the request message

� can be rejected with a QuoteStatusReport message, with QuoteStatus set
to 5 (Rejected) and QuoteMsgID set to (copied from) the value in the
request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to Z

� can be rejected with a Reject message, with SessionRejectReason set to the
reject reason and RefSeqNum set to the sequence number of the Quote-
Cancel message

Table 3.15: QuoteCancel (Z).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef> Component added.

Conditionally required
when QuoteCancelType
is 1 (Cancel for a secu-
rity) or 5 (Cancel quote
specified in QuoteID or
OrigQuoteMsgID).

49

Private Service

Table 3.15: QuoteCancel (Z).

Tag Field Name Type Req Description

131 QuoteReqID string C Conditionally required
when quote is in response
to a QuoteRequest
message.

117 QuoteID string C Quote identifier assigned
by the exchange.
Conditionally required
when QuoteCancel-
Type is 5 (Cancel quote
specified in QuoteID
or OrigQuoteMsgID)
and OrigQuoteMsgID is
absent.

1166 QuoteMsgID string Y Unique client-assigned
identifier for the request.

20018 OrigQuoteMsgID string C Reference to previous
QuoteMsgID. Custom
field.
Conditionally required
when QuoteCancelType
is 5 (Cancel quote spec-
ified in QuoteID or
OrigQuoteMsgID) and
QuoteID is absent.

298 QuoteCancelType uInt32 Y Identifies the type of
quote cancel.
1=Cancel for a security
4=Cancel all quotes
5=Cancel quote specified
in QuoteID or
OrigQuoteMsgID

301 QuoteResponseLevel uInt32 N Level of response
requested. Absence
means 2.
0=No Acknowledgement
1=Acknowledge only
negative or erroneous
quotes
2=Acknowledge each
quote message
3=Summary Acknowl-
edgement

60 TransactTime uInt64 N UTC timestamp this
quote was cancelled.

50

3.8 Quote Messages

3.8.5 Quote Request (R)

The Quote Request message is used by the market place to request an updated
quote, when the quote validation mechanism is enabled. The request identifies
a single quote that need to be updated. The market maker should respond
with a Quote message, with updated values or confirming previous values, or
with a Quote Cancel message. If the market maker does not respond within a
pre-defined timeout the quote will be canceled.

QuoteRequest is sent:

� unsolicited, when the quote would be part of a matching operation a
update (or cancellation) of the quote is required

Table 3.16: QuoteRequest (R).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef>

131 QuoteReqID string Y Unique identifier for
quote request.

117 QuoteID string Y Quote identifier. Field
added.

3.8.6 Quote Status Request (a)

A snapshot of all quotes can be requested using the Quote Status Request mes-
sage. The response is one or more Quote Status Report messages with QuoteS-
tatus = 8 (query). The last response has the LastRptRequested field set to ’Y’.
Note that if there are no quotes available, a dummy quote with no SecurityID
set (null) will be sent as the last and only message.

QuoteStatusRequest:

� is replied to with a QuoteStatusReport message, with QuoteStatus set to
8 (Query) and QuoteStatusReqID set to (copied from) the value in the
request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to a

� can be rejected with a Reject message, with SessionRejectReason set to the
reject reason and RefSeqNum set to the sequence number of the QuoteS-
tatusRequest message

51

Private Service

Table 3.17: QuoteStatusRequest (a).

Tag Field Name Type Req Description

component block
<StandardHeader>

649 QuoteStatusReqID string N
263 SubscriptionRequest-

Type
uInt32 Y ASCII char enumeration.

’0’=Snapshot

3.9 Trade Messages

Both automatic matching of orders/quotes and manual trades are conveyed
using the Trade Capture Report message.

For manual trade reporting, one-party report for pass-through to counter-
party (figure 3.2), is the only accepted trading model for non-internal trades.
For internal trades, where the counterparty is the same as the reporting party,
the two-party report trading model (figure 3.3) is also accepted. Providers may
also use the two-party report trading model, for trades between trader groups
for which they are allowed to act on behalf of.

The Trade Capture Report message is also used for matching orders in a
manually matched orderbook. See appendix B for more information.

In the one-party for pass-through model the initiator can cancel the trade
as long as it is not confirmed by the counterparty. Non-confirmed trades have
no TradeID, which means that they must be referenced to with the TradeRe-
portRefID field.

Reporting
Party 4.Confirm

1.Request
4.Confirm

Market Place Market Data,
etc.

2.Request
Counterparty 3.Ack

4.Confirm

Figure 3.2: Privately negotiated trade, one-party report for pass-through to
counterparty.

52

3.9 Trade Messages

Reporting
Party 2.Confirm

1.Request
2.Confirm

Market Place Market Data,
etc.

Counterparty 2.Confirm

Figure 3.3: Privately negotiated trade, two-party report.

The counterparty is referenced by the marketplace assigned member code
in PartyID and optionally by the trader group in PartySubID (PartySubIDType
= System). The trader group is required for manual trade reports sent to the
exchange. In addition, for manual trades, traders can specify a trader id (free
text) in PartySubID (PartySubIDType = Person) for both the own side and the
counterparty.

In general the following trade messages are sent from the market place.

New automatically
matched trade from
marketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Confirm (’0’)
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

Cancel trade from mar-
ketplace.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Trade Report Cancel (6)
TradeHandlingInstr = Trade Confirm (’0’)
TradeReportID=<new>
TradeReportRefID=<marketplace’s>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

3.9.1 One-Party Report for Pass-Thru

In the one-party report for pass-thru model the marketplace will respond each
Trade Capture Report with a Trade Capture Report Ack. The messages are
filled in as follows in each step of this model.

Initiator submit to mar-
ketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportID=<new>

53

Private Service

Ack from marketplace
of initiator submit.

Trade Capture Report Ack
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportID=<initiator’s>

Marketplace forward of
submit to counterparty.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Alleged (1)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportID=<new>
MatchStatus = Unaffirmed (’1’)

Inititator cancel to
marketplace, before
counterparty has ac-
cepted/declined.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<initiator’s previous>
TradeReportID=<new>

Ack from marketplace
of inititator cancel.

Trade Capture Report Ack
TradeReportTransType = Cancel (0)
TradeReportType = Submit (0)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<initiator’s>
TradeReportID=<initiator’s>

Marketplace forward of
cancel to counterparty.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Alleged (1)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<marketplace’s>
TradeReportID=<new>
MatchStatus = Unaffirmed (’1’)

Counterparty ac-
cept/decline to market-
place.

Trade Capture Report
TradeReportTransType = Replace (2)
TradeReportType = Accept (2) or Decline (3)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<marketplace’s>
TradeReportID=<new>

Ack from market-
place of counterparty
accept/decline.

Trade Capture Report Ack
TradeReportTransType = Replace (2)
TradeReportType = Accept (2) or Decline (3)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<marketplace’s>
TradeReportID=<counterparty’s>

54

3.9 Trade Messages

Marketplace forward of
decline to initiator.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Decline (3)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<initiator’s>
TradeReportID=<new>
MatchStatus = Unaffirmed (’1’)

Marketplace con-
firm trade to initia-
tor/counterparty.

Trade Capture Report
TradeReportTransType = Replace (2)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Confirm (’0’)
TradeReportRefID=<initiator’s> or
<counterparty’s>
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

Reject from mar-
ketplace in response
a malformed Trade
Capture Report.

Trade Capture Report Ack
TradeReportTransType = <same>
TradeReportType = <same>
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<same>
TradeReportID=<same>
TradeReportRejectReason=<specified>

Cancel from market-
place (due to timeout
or cleanup) to initia-
tor/counterparty.

Trade Capture Report
TradeReportTransType = Cancel (1)
TradeReportType = Alleged (1)
TradeHandlingInstr = One-Party Report for Pass-
Thru (’3’)
TradeReportRefID=<initiator’s> or
<marketplace’s>
TradeReportID=<new>
MatchStatus = Unaffirmed (’1’)

3.9.2 Two-Party Report

In the two-party report model no Trade Capture Report Ack message is sent
in response to a successful request. Instead the confirmed trade is sent directly.
The fields are used in the following way in this model.

Initiator submit to mar-
ketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Two-Party Report (’1’)
TradeReportID=<new>

55

Private Service

Marketplace confirm
trade to initiator.

Trade Capture Report
TradeReportTransType = Replace (2)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Confirm (’0’)
TradeReportRefID=<initiator’s>
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

Marketplace confirm
trade to counterparty.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Confirm (’0’)
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

Reject from mar-
ketplace in response
a malformed Trade
Capture Report.

Trade Capture Report Ack
TradeReportTransType = <same>
TradeReportType = <same>
TradeHandlingInstr = Two-Party Report (’1’)
TradeReportRefID=<same>
TradeReportID=<same>
TradeReportRejectReason=<specified>

3.9.3 Trade Component Block

This component block is used to define a trade.

Table 3.18: Trade.

Tag Field Name Type Req Description

1003 TradeID string N Assigned by the market-
place when it records a
confirmed trade.

487 TradeReportTrans-
Type

uInt32 N Transaction type.
0=New
1=Cancel
2=Replace
3=Release
4=Reverse
5=Cancel Due To Back
Out of Trade

856 TradeReportType uInt32 N 0=Submit
1=Alleged
2=Accept
3=Decline
6=Trade Report Cancel

56

3.9 Trade Messages

Table 3.18: Trade.

Tag Field Name Type Req Description

828 TrdType uInt32 N 0=Regular Trade
52=Exchange Granted
Trade

855 SecondaryTrdType uInt32 N Absence means ’0’.
Applies only to manual
trades. MiFID II
regulatory field.
0=Regular Trade.
64=Benchmark Trade.

1839 TrdPriceCondition uInt32 N Applies only to manual
trades. MiFID II
regulatory field.
13=Special dividend
Trade.
15=Non-price forming
Trade.
16=Trade not
contributing to the price
discovery process

1115 OrdCategory uInt32 N Applies only to manual
trades. MiFID II
regulatory field.
3=Privately Negotiated
Trade

2668 TrdRegPublications sequence N Applies only to manual
trades. MiFID II regula-
tory field.

2669 →TrdRegPublication-
Type

uInt32 N
0=Pre-trade
transparency waiver

57

Private Service

Table 3.18: Trade.

Tag Field Name Type Req Description

2670 →TrdRegPublReason uInt32 N
0=No preceding order in
book as transaction price
set within average spread
of a liquid instrument.
ESMA RTS ”NLIQ”.
1=No preceding order in
book as transaction price
depends on system-set
reference price for an
illiquid instrument.
ESMA RTS ”OILQ”.
2=No preceding order in
book as transaction price
is for transaction subject
to conditions other than
current market price.
ESMA RTS ”PRIC”.

1123 TradeHandlingInstr uInt32 N ASCII char enumeration.
’0’=Trade Confirmation
’1’=Two-Party Report
’3’=One-Party Report
for Pass Through

32 LastQty decimal C Trade quantity of this
(last) fill.
Required in TradeCap-
tureReport.

31 LastPx decimal C Trade price of this (last)
fill.
Required in TradeCap-
tureReport.

60 TransactTime uInt64 N UTC timestamp this
transaction occured.
Execution time of trade
or cancellation.

483 TransBkdTime uInt64 N UTC timestamp this
trade was booked, if
other than Transact-
Time. Used for manual
trade reports and for
trade cancellations. Field
added.

58

3.9 Trade Messages

Table 3.18: Trade.

Tag Field Name Type Req Description

573 MatchStatus uInt32 N The status of this trade
with respect to matching
or comparison. ASCII
char enumeration.
’0’=Compared, matched
or affirmed
’1’=Uncompared,
unmatched, or
unaffirmed

574 MatchType uInt32 N ASCII char enumeration.
’1’=One-Party Trade
Report (privately
negotiated trade)
’2’=Two-Party Trade
Report (privately
negotiated trade)
’4’=Auto-match
’7’=Call Auction
’x’=Manually Matched
Trade Report

59

Private Service

Table 3.18: Trade.

Tag Field Name Type Req Description

277 TradeCondition string N Trade conditions set by
exchange. Multiple char
value (delimited with
space). Field added.
I=Sold Last (late
reporting)
AV=Outside Spread
X0=Outside Spread
Unknown

XB=Knockout buyback
Trade
XS=Buyback Trade
XD=Distribution Trade
XAO=Opening auction
Trade
XAC=Closing auction
Trade
XAD=Circuit breaker
dynamic auction Trade
XAS=Circuit breaker
static auction Trade
XAP=Order protection
auction Trade
XAR=Missing reference
price auction trade
XLI=Large In Scale
trade

552 Sides sequence C Conditionally required
in TradeCaptureReport
when TradeID is not
[N/A].

54 →Side uInt32 Y ASCII char enumeration.
’1’=buy
’2’=sell

37 →OrderID string N
20028 →OrderPriority uInt64 N Indicates the priority of

the order in the order-
book in comparison to
other orders on the same
level. Higher value means
lower priority. Custom
field.

60

3.9 Trade Messages

Table 3.18: Trade.

Tag Field Name Type Req Description

11 →ClOrdID string N Client assigned order id
in case of an order. In the
case of quotes mapped to
QuoteMsgID of a single
Quote.

526 →SecondaryClOrdID string N In the case of quotes
mapped to QuoteID of a
single Quote.

1 →Account string N Account as specified in
the order or Trade Cap-
ture Request.

1093 →LotType uInt32 N Defines the lot type
assigned to the order.
ASCII char enumeration.
’1’=Odd Lot
’2’=Round Lot

1057 →AggressorIndicator uInt32 N Used to identify whether
the order initiator is an
aggressor or not in the
trade. Boolean.
’Y’=Order initiator is
aggressor
’N’=Order initiator is
passive

528 →OrderCapacity uInt32 N Designates the capacity
of the firm placing the
order. Absence means
’R’ for trades reported to
the exchange.
’P’=Principal (Deal)
’R’=Riskless principal
(Matched)
’A’=Agency (Any other
capacity)

529 →OrderRestrictions string N Multiple char value
(delimited with space).
Restrictions associated
with an order.
B=Issuer Holding
C=Issue Price
Stabilization

61

Private Service

Table 3.18: Trade.

Tag Field Name Type Req Description

159 →AccruedInterestAmt decimal N Amount of accrued in-
terest the buyer compen-
sates the seller. Applica-
ble for bonds and fixed in-
come.

1724 →OrderOrigination uInt32 N Identifies the origin of
the order. Absence
means non DEA.
’5’=Order received from a
direct access or sponsored
access customer

→ component block <Parties>
→ component block
<OrderAttributeGrp>

3.9.4 Trade Capture Report (AE)

The Trade Capture Report message is used by the exchange to send confirmed
trades. It is also used in manual trade reporting.

TradeCaptureReport:

� is replied to with a TradeCaptureReport message, with TradeReportRefID
set to (copied from) the value in the request message

� is replied to with a TradeCaptureReportAck message, with TradeReportRe-
jectReason set to 0 (Successful) and TradeReportID set to (copied from)
the value in the request message

� can be rejected with a TradeCaptureReportAck message, with TradeRe-
portRejectReason set to 1 (InvalidPartyInformation), 2 (UnknownInstru-
ment), 3 (UnauthorizedToReportTrades), 4 (InvalidTradeType), 99 (Other)
or 100 (ManualTradesNotAllowedInAnyKnockoutState) and TradeRepor-
tID set to (copied from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to AE

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Trade-
CaptureReport message

TradeCaptureReport is sent:

� unsolicited, when a trade occurs

62

3.9 Trade Messages

� in reply to a TradeCaptureReport message, with TradeReportRefID set to
(copied from) the value in the request message

� in reply to a TradeCaptureReportRequest message, with TradeRequestID
set to (copied from) the value in the request message

Table 3.19: TradeCaptureReport (AE).

Tag Field Name Type Req Description

component block
<StandardHeader>

571 TradeReportID string N Assigned by the submit-
ter of the message and
used as a pure message
identifier.

572 TradeReportRefID string N The TradeReportID that
is being referenced for
some action, such as cor-
rection or cancelation.

568 TradeRequestID string N Request ID if this mes-
sage is in response to
a Trade Capture Report
Request.

912 LastRptRequested uInt32 N Indicates that this is the
last report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
’N’=Not Last Message
’Y’=Last Message

component block <SecurityRef>
component block <Trade>

3.9.5 Trade Capture Report Ack (AR)

The Trade Capture Report Ack message is used for rejects. It is also used to
acknowledge receival of trade capture reports in the following cases:

� Initiator’s trade capture report (both new and cancel) for a one-party
report for pass through.

� Counterparty’s decline of a one-party report for pass through.

In other cases the confirmed trade capture report can be seen as an acknowl-
edgement. This means that the Trade Capture Report will always be directly
replied to with a message.

TradeCaptureReportAck is sent:

63

Private Service

� in reply to a TradeCaptureReport message, with TradeReportRejectReason
set to 0 (Successful) and TradeReportID set to (copied from) the value in
the request message

� to reject a TradeCaptureReport message, with TradeReportRejectReason
set to 1 (InvalidPartyInformation), 2 (UnknownInstrument), 3 (Unautho-
rizedToReportTrades), 4 (InvalidTradeType), 99 (Other) or 100 (Manual-
TradesNotAllowedInAnyKnockoutState) and TradeReportID set to (copied
from) the value in the request message

Table 3.20: TradeCaptureReportAck (AR).

Tag Field Name Type Req Description

component block
<StandardHeader>

571 TradeReportID string N Assigned by the submit-
ter of the message and
used as a pure message
identifier.

572 TradeReportRefID string N The TradeReportID that
is being referenced for
some action, such as cor-
rection or cancelation.

568 TradeRequestID string N Request ID if this mes-
sage is in response to
a Trade Capture Report
Request.

912 LastRptRequested uInt32 N Indicates that this is the
last report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
’N’=Not Last Message
’Y’=Last Message

64

3.9 Trade Messages

Table 3.20: TradeCaptureReportAck (AR).

Tag Field Name Type Req Description

751 TradeReportReject-
Reason

uInt32 N 0=Successful (default)
1=Invalid party
information
2=Unknown instrument
3=Unauthorized to
report trades
4=Invalid trade type
5=Manual trades are not
allowed for this
instrument
6=Manual trades that
add to DVC limits not
allowed for this
instrument.
7=Trade for this specific
instrument and/or
member is blocked by a
killswitch.
99=Other
100=Manual trades not
allowed in any knockout
state

component block <SecurityRef>
component block <Trade>

58 Text string N Error message.

3.9.6 Trade Capture Report Request (AD)

All trade capture reports involving the requester’s trader group can be requested
with the Trade Capture Report Request message with TradeRequestType set to 0
(All Trades). Only trades for the last 72 hours are available. The time interval
can be narrowed further by setting TradeRequestType to 1 and specifying the
time interval in the Dates sequence. This message will be replied to with one
or more Trade Capture Report messages. The last Trade Capture Report will
be indicated with LastRptRequested field set to ’Y’. Note that a dummy Trade
Capture Report with TradeID set to ”[N/A]” and LastRptRequested field set to
’Y’ may be sent as last message to indicate the request has been processed (for
example as a response with no trades).

In the event of a malformed request, the response will be a Trade Capture
Report Request Ack message.

TradeCaptureReportRequest:

65

Private Service

� is replied to with a TradeCaptureReport message, with TradeRequestID
set to (copied from) the value in the request message

� is replied to with a TradeCaptureReportRequestAck message, with TradeRequestRe-
sult set to 0 (Successful) and TradeRequestID set to (copied from) the
value in the request message

� can be rejected with a TradeCaptureReportRequestAck message, with TradeRequestRe-
sult set to 1 (InvalidOrUnknownInstrument), 2 (InvalidTypeOrTradeRequested),
3 (InvalidParties), 4 (InvalidTransportTypeRequested), 5 (InvalidDestina-
tionRequest), 8 (TradeRequestTypeNotSupported), 9 (NotAuthorized) or
99 (Other) and TradeRequestID set to (copied from) the value in the
request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to AD

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Trade-
CaptureReportRequest message

Table 3.21: TradeCaptureReportRequest (AD).

Tag Field Name Type Req Description

component block
<StandardHeader>

568 TradeRequestID string Y Identifier for the trade re-
quest.

569 TradeRequestType uInt32 Y 0=All trades (last 48
hours)
1=Matched trades
matching criteria pro-
vided on request

580 Dates sequence N Range of dates. Since
(NoDates=1) or Between
(NoDates=2) dates, in-
clusive.

60 →TransactTime uInt64 Y UTC time the trade was
created.

3.9.7 Trade Capture Report Request Ack (AQ)

This message is only sent as a reject to a Trade Capture Report Request.

TradeCaptureReportRequestAck is sent:

� in reply to a TradeCaptureReportRequest message, with TradeRequestRe-
sult set to 0 (Successful) and TradeRequestID set to (copied from) the

66

3.9 Trade Messages

value in the request message

� to reject a TradeCaptureReportRequest message, with TradeRequestResult
set to 1 (InvalidOrUnknownInstrument), 2 (InvalidTypeOrTradeRequested),
3 (InvalidParties), 4 (InvalidTransportTypeRequested), 5 (InvalidDestina-
tionRequest), 8 (TradeRequestTypeNotSupported), 9 (NotAuthorized) or
99 (Other) and TradeRequestID set to (copied from) the value in the
request message

Table 3.22: TradeCaptureReportRequestAck (AQ).

Tag Field Name Type Req Description

component block
<StandardHeader>

568 TradeRequestID string Y Identifier for the trade re-
quest.

569 TradeRequestType uInt32 Y 0=All trades (last 48
hours)
1=Matched trades
matching criteria pro-
vided on request

749 TradeRequestResult uInt32 Y Result of Trade Request.
0=Successful (default)
1=Invalid or unknown
instrument
2=Invalid type of trade
requested
3=Invalid parties
4=Invalid transport type
requested
5=Invalid destination
requested
8=TradeRequestType
not supported
9=Not authorized
99=Other

750 TradeRequestStatus uInt32 Y Status of Trade Request.
0=Accepted
1=Completed
2=Rejected

58 Text string N Error message.

67

Private Service

3.10 Financial Status Messages

3.10.1 User Security Status Update Request (FU)

The User Security Status Update Request message allows a member with suffi-
cient rights to change the financial status of a specific instrument. If the request
is accepted, the new financial status will be published by a Security Status mes-
sage on the public channel.

A request to knock the instrument will be replied with the status being
changed to Knock out or Knock out buyback. The latter will be replied if the
instrument is registered as a Buy-Back instrument.

UserSecurityStatusUpdateRequest:

� is replied to with an UserSecurityStatusUpdateResponse message, with Se-
curityStatusUpdateRequestID set to (copied from) the value in the request
message

� can be rejected with an UserSecurityStatusUpdateResponse message, with
FinancialStatusResult set to 1 (UnknownSecurityId), 2 (InvalidFinancial-
Status), 3 (InsufficientRigths) or 4 (Other) and SecurityStatusUpdateRequestID
set to (copied from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to FU

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the User-
SecurityStatusUpdateRequest message

Table 3.23: UserSecurityStatusUpdateRequest (FU).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef>

20040 SecurityStatusUpdate-
RequestID

string Y

20049 FinancialStatus-
Updates

sequence N

20038 →FinancialStatus-
UpdateType

uInt32 Y Financial status type.
1=Knock instrument
(will result in knockout
or knockout buyback)
2=Soft-knock instrument
3=Buyback
4=Distribution
5=Protection
Mode(Trigger auc-
tion when Market Maker
quote is missing)

68

3.10 Financial Status Messages

Table 3.23: UserSecurityStatusUpdateRequest (FU).

Tag Field Name Type Req Description

20050 →FinancialStatus-
UpdateValue

uInt32 Y Financial status
operation.
1=Enable
2=Clear

3.10.2 User Security Status Update Response (FR)

UserSecurityStatusUpdateResponse is sent:

� in reply to an UserSecurityStatusUpdateRequest message, with SecurityS-
tatusUpdateRequestID set to (copied from) the value in the request mes-
sage

� to reject an UserSecurityStatusUpdateRequest message, with Financial-
StatusResult set to 1 (UnknownSecurityId), 2 (InvalidFinancialStatus), 3
(InsufficientRigths) or 4 (Other) and SecurityStatusUpdateRequestID set
to (copied from) the value in the request message

Table 3.24: UserSecurityStatusUpdateResponse (FR).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef>

20040 SecurityStatusUpdate-
RequestID

string Y

69

Private Service

Table 3.24: UserSecurityStatusUpdateResponse (FR).

Tag Field Name Type Req Description

291 FinancialStatus string N Multiple char value
(delimited with space).
All values are mutually
exclusive except ’Under
observation’ and ’Order
protection mode’ which
can appear together with
any of the others.
W=Knockout
X=Knockout buyback
Y=Knockout soft
U=Buyback
V=Distribution
Z=Under observation
D=Circuit breaker
dynamic
S=Circuit breaker static
M=Order protection
mode
P=Order protection
auction
Q=Manual matching
C=Recalculated

20042 FinancialStatusResult uInt32 Y Financial status update
result.
0=Success
1=Unknown Security ID
2=Unsupported financial
operation
3=User does not have
sufficient rights to
update financial status
4=Other error

58 Text string N Message to explain reason
in case of rejection

70

Chapter 4

Public Service

The public service is mainly used for receiving reference data and market data
from the exchange. The traffic is almost entirely of a non-interactive “broad-
cast” nature. Non-interactive since information is sent spontaneously from the
exchange (not in direct response to a request from the user). Broadcast since
the same information is sent to all users of the service.

Examples of non-interactive traffic include public orders and trades as well
as security definitions. An example of interactive traffic is snapshot messages.

As a consequence of the non-interactive and broadcast properties of the
service, data (typically orders from other users) is pushed to a user’s session even
when a user is offline. No subscription requests are required nor supported by
the service. Instead, a user needs to synchronize with the service when logging
on, either on the session level (by requesting retransmission of lost messages) or
on the application level (by requesting snapshots).

Note that for scalability reasons the public service can be divided into mul-
tiple FIX sessions. The public data is then partitioned by security, meaning
that security data and market data for a given security is only sent on one of
the FIX sessions. Reference data such as market structure and trading session
status is sent on all FIX sessions.

When multiple FIX sessions are used, the sessions should be considered
independent of each other since no guarantees regarding timing between the
sessions can be made.

4.1 Full Snapshot Recovery

On the public service snapshots can be requested for the following:

Market Structure See the Market Definition Request message in section 4.5.2.

Trading Session Status See the Trading Session Status Request message in
section 4.5.6.

Securities See the Security List Request message in section 4.4.2.

Security Status See the Security Mass Status Request message in section 4.4.5.

Market Data See the Market Data Request message in section 4.6.2.

71

Public Service

Corporate Actions See the Corporate Action Request message in section 4.7.3.

4.2 Message Overview

The following messages can be sent/received by the client to/from the public
service. Depending on the filter rules only a subset of the following messages
may be sent/received.

Note that since no operations that modify data are permitted on the public
service the messages for All and Read-only filtering rules are the same.

Table 4.1: Message overview.

Message Class All? Read-
only?

Snap-
shot-
only?

MarketDataRequest Market
data

send send send

MarketDataSnapshotFullRefresh Market
data

recv recv recv

MarketDataIncrementalRefresh Market
data

recv recv

MarketDataRequestReject Market
data

recv recv recv

SecurityListRequest Security send send send
SecurityList Security recv recv recv
SecurityDefinitionUpdateReport Security recv recv
SecurityMassStatusRequest Security

status
send send send

SecurityStatus Security
status

recv recv recv

MarketDefinitionRequest Market
structure

send send send

MarketDefinition Market
structure

recv recv recv

MarketDefinitionUpdateReport Market
structure

recv recv

TradingSessionStatusRequest Trading
session
status

send send send

TradingSessionStatus Trading
session
status

recv recv recv

CorporateActionReport Corporate
action

recv recv recv

CorporateActionRequest Corporate
action

send send send

72

4.3 Component Blocks

4.2.1 Filtering Examples

The following are examples of filter rules that can be useful when not all infor-
mation is required or can be handled.

Reference data is only needed, i.e. list of securities and market segments:
Market Structure=read-only, Trading Session Status=none, Securities=read-
only, Security Status=none, Market Data=none, Corporate Actions=none.

Reference data and corporate actions is needed, i.e. list of securities and
market segments plus information about corporate actions (splits etc.):
Market Structure=read-only, Trading Session Status=none, Securities=read-
only, Security Status=none, Market Data=none, Corporate Actions=read-
only.

Reference data with status is needed, i.e. list of securities and market seg-
ments and the trading status of the market segments and securities:
Market Structure=read-only, Trading Session Status=read-only, Securities=read-
only, Security Status=read-only, Market Data=none, Corporate Actions=none.

4.3 Component Blocks

4.3.1 Security Defaults

Security parameters that can have default values on the market segment level,
and overridden on security level.

Table 4.2: SecurityDefaults.

Tag Field Name Type Req Description

15 Currency string N ISO 4217 currency code.
543 InstrRegistry string N Values may include BIC

for the depository or
custodian who maintain
ownership records, the
ISO country code for the
location of the record, or
the value ”ZZ” to specify
physical ownership of the
security (e.g. stock cer-
tificate).

40471 BusinessCenter string N A business center whose
calendar is used for
date adjustment, e.g.
”GBLO”.

20070 ZoneID string N The IANA Time Zone
identifier which is used
for local time and date
conversions. Custom
field.

73

Public Service

4.3.2 Trading Rules

Trading rules that can be specified on market segment level and overridden on
security level.

Table 4.3: TradingRules.

Tag Field Name Type Req Description

562 MinTradeVol decimal N Minimum trading volume
that can be submitted

561 RoundLot decimal N
423 PriceType uInt32 N Defines the default Price

Type used for trading.
1=Percentage (i.e.
percent of par)
2=Per unit (i.e. per
share or contract)

20054 MaxOrderExpire-
Duration

uInt32 N Max duration in seconds
of ExpireTime in GTC
orders. Custom field.

20055 MaxTradeTransBkd-
TimeDiff

uInt32 N Max time difference in
seconds between Trans-
actTime and TransBkd-
Time of trades, i.e. how
far back in time a man-
ual trade can be reported.
Custom field.

1205 TickRules sequence N This block specifies the
rules for determining how
a security ticks, i.e. the
price increments at which
it can be quoted and
traded.

1206 →StartTickPrice-
Range

decimal N Starting price range for
specified tick increment.

1207 →EndTickPriceRange decimal N Ending price range for
specified tick increment.

1208 →TickIncrement decimal N Tick increment for stated
price range.

1235 MatchRules sequence N

74

4.3 Component Blocks

Table 4.3: TradingRules.

Tag Field Name Type Req Description

1142 →MatchAlgorithm string Y The type of algorithm
used to match orders in
this market segment.
price-time=FIFO
matching with price-time
order priority.
price-internal-
time=FIFO matching
with price-internal-time
order priority.

574 →MatchType uInt32 N The point in the
matching process at
which the matching
algorithm applies. ASCII
char enumeration.
’4’=Auto-match
(continuous trading)
’7’=Call Auction
’x’=Manually Matched
Trade Report

20056 MarketOrderRules sequence N The rules that applies for
market order. Custom
field.

75

Public Service

Table 4.3: TradingRules.

Tag Field Name Type Req Description

20057 →MarketOrderRule uInt32 Y The market order rules
that applies. Custom
field.
1=Allow instantenous
(IOC or FoK) market
orders and during
auctions.
2=Allow market orders
to be placed into the
order book.
3=Market order
protection enabled.
Indicates whether
retailers are ensured that
the market maker is
present when submitting
instantenous (IOC or
FoK) market orders.
Furthermore it allows
the instrument to enter
’Order Protection Mode’.
4=Reveal market order
in market data.
5=Match immediate
market order only
against the best price
level during continuous
trading. Not applicable
to non-immediate market
orders.

20058 OrderProtection-
AuctionTimeMin

uInt32 N Lower bound in mil-
liseconds of duration
of the order protection
auction.Custom field.

20059 OrderProtection-
AuctionTimeMax

uInt32 N Upper bound in mil-
liseconds of duration
of the order protection
auction.Custom field.

20067 MissingReference-
PriceAuctionTimeMin

uInt32 N Lower bound in millisec-
onds of duration of the
missing reference price
auction.Custom field.

76

4.3 Component Blocks

Table 4.3: TradingRules.

Tag Field Name Type Req Description

20068 MissingReference-
PriceAuctionTimeMax

uInt32 N Upper bound in millisec-
onds of duration of the
missing reference price
auction.Custom field.

20052 AllowReserveOrder uInt32 N Indicates whether reserve
orders are allowed on
this instrument. ASCII
char enumeration
(boolean). Custom field.
’Y’=Reserve order
allowed on instrument
’N’=Reserve order not
allowed on instrument

20051 MinReserveOrder-
Value

decimal N Minimum reserve order
value, applicable for both
new orders and order
modifications. If the field
is absent or set to 0 it
means that there are no
minimum value. Custom
field.

20060 MinReserveOrder-
ValueCurrency

string N Currency for MinRe-
serveOrderValue. ISO
4217 currency code.
Custom field.

20061 MarketDataRules sequence N Market data visibility
rules. Custom field.

20062 →MarketDataRule uInt32 Y Custom field.
1=Reveal counterparty
information for orders
and trades
2=Distribute orders
during Pre-Open
3=Distribute equilibrium
price during auctions

20063 PartyRules sequence N Party information rules
that applies. Custom
field.

77

Public Service

Table 4.3: TradingRules.

Tag Field Name Type Req Description

20064 →PartyRule uInt32 N Indicates which PartyID
information must be
present.
1=Executing trader is
required for orders and
quotes.
2=ClientID is required
for orders.
3=ClientID is NOT
permitted for quotes.

20065 TradeReportRules sequence N Rules for manual trade
reports. Custom field.

20066 →TradeReportRule uInt32 N Custom field.
1=Allow all trade
reports.
2=Allow only trade
reports that do not add
to the Double Volume
Cap (DVC) limits.

4.4 Security Messages

In this document order book and security are used interchangeably. Two order
books for the same instrument (e.g. different currencies) will be defined as two
securities.

4.4.1 Security Component Block

This component block is used to define a security. The security is described
in detail using the SecurityXML field. The format of the XML is described in
NGM XML Security Specification.

The PriceType of the security controls the type of the Price field in orders
and quotes for the security. When PriceType is percentage then a price of 99.5 %
is is specified as Price=99.5.

Table 4.4: Security.

Tag Field Name Type Req Description

component block <SecurityRef>
454 SecurityAltIDs sequence N

78

4.4 Security Messages

Table 4.4: Security.

Tag Field Name Type Req Description

455 →SecurityAltID string Y Alternative security iden-
tifier of type specified in
SecurityAltIDSource.

79

Public Service

Table 4.4: Security.

Tag Field Name Type Req Description

456 →SecurityAltIDSource uInt32 Y Identifies the class of
SecurityID. ASCII char
enumeration.
’1’=CUSIP
’2’=SEDOL
’3’=QUIK
’4’=ISIN
’5’=RIC code
’6’=ISO Currency Code
’7’=ISO Country Code
’8’=Exchange Symbol
’9’=Consolidated Tape
Association (CTA)
Symbol (SIAC
CTS/CQS line format)
’B’=Wertpapier
’C’=Dutch
’D’=Valoren
’E’=Sicovam
’F’=Belgian
’G’=”Common”
(Clearstream and
Euroclear)
’H’=Clearing House /
Clearing Organization
’J’=Option Price
Reporting Authority
’L’=Letter of Credit
’M’=Marketplace-
assigned
identifier
’N’=Markit RED Entity
CLIP
’P’=Markit RED Pair
CLIP
’Q’=CFTC Commodity
Code
’R’=ISDA Commodity
Reference Price
’S’=Financial Instrument
Global Identifier
’T’=Legal Entity
Identifier
’U’=Synthetic
’x’=Secondary market-
place-assigned identifier

80

4.4 Security Messages

Table 4.4: Security.

Tag Field Name Type Req Description

component block
<SecurityDefaults>

1310 MarketSegments sequence N A security is strictly
member of one market
segment.

1301 →MarketID string N Identifies the market.
ISO 10383 Market Iden-
tifier Code (MIC).

1300 →MarketSegmentID string N Identifies the market seg-
ment.

→ component block
<TradingRules>

1185 SecurityXML string N XML data describing the
security.

20069 LiquidityStatus uInt32 N Liquidity status
classification of this
security. Absence means
unknown or
N/A.Custom field.
1=Liquid
2=Illiquid

4.4.2 Security List Request (x)

A list of the all available securities are requested with the Security List Request
message. The request will be replied to with one or more Security List messages.
The last Security List message will always be indicated with the LastFragment
field set to ’Y’. Note that a reply with 0 repeating securities may be sent as a
reply.

In the event of a malformed request, the response will be a Security List
message with SecurityRequestResult set to 1 (Invalid or unsupported request).

SecurityListRequest:

� is replied to with a SecurityList message, with SecurityRequestResult set
to 0 (ValidRequest) and SecurityReqID set to (copied from) the value in
the request message

� can be rejected with a SecurityList message, with SecurityRequestResult
set to 1 (InvalidOrUnsupportedRequest) and SecurityReqID set to (copied
from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to x

81

Public Service

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Se-
curityListRequest message

Table 4.5: SecurityListRequest (x).

Tag Field Name Type Req Description

component block
<StandardHeader>

320 SecurityReqID string Y

4.4.3 Security List (y)

Response to Security List Request.

SecurityList is sent:

� in reply to a SecurityListRequest message, with SecurityRequestResult set
to 0 (ValidRequest) and SecurityReqID set to (copied from) the value in
the request message

� to reject a SecurityListRequest message, with SecurityRequestResult set
to 1 (InvalidOrUnsupportedRequest) and SecurityReqID set to (copied
from) the value in the request message

Table 4.6: SecurityList (y).

Tag Field Name Type Req Description

component block
<StandardHeader>

320 SecurityReqID string N
560 SecurityRequestResult uInt32 N 0=Valid request (default)

1=Invalid or
unsupported request

893 LastFragment uInt32 N Indicates whether this is
the last fragment in a
sequence of message
fragments. ASCII char
enumeration (boolean).
’N’=Not Last Message
’Y’=Last Message

146 RelatedSym sequence N
→ component block <Security>

82

4.4 Security Messages

4.4.4 Security Definition Update Report (BP)

Incremental (unsolicited) update of available securities.

SecurityDefinitionUpdateReport is sent:

� unsolicited, when a change occurs

Table 4.7: SecurityDefinitionUpdateReport (BP).

Tag Field Name Type Req Description

component block
<StandardHeader>

980 SecurityUpdateAction uInt32 N ASCII char enumeration.
’A’=Add
’D’=Delete
’M’=Modify

20027 SecurityMoveIndicator uInt32 N ASCII char enumeration.
Abscence means No
’Y’=Yes. The
SecurityUpdateAction
(Add/Delete) is a move
between two market data
channels.
’N’=No. The security
appears for the first
time/is permanently
removed

component block <Security>
58 Text string N Comment, instructions or

other identifying informa-
tion.

4.4.5 Security Mass Status Request (NGM-ex)

The status of all securities can be requested with the Security Mass Status
Request message. The reply is one or more Security Status messages. The
last Security Status message will always be indicated with the LastRptRequested
field set to ’Y’. In the unlikely event that there is no security defined a dummy
Security Status message with SecurityID absent (null) and LastRptRequested
field set to ’Y’ will be sent as a response.

Notice that the security status snapshot and the security list snapshot is an

83

Public Service

exception that all replies are in the same order as the requests sent. The correct
behaviour to counter this is to request the security status once the complete
security list has been received.

If no Security Status message is received for a security the trading status
should be considered closed.

SecurityMassStatusRequest:

� is replied to with a SecurityStatus message, with SecurityStatusReqID set
to (copied from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to NGM-ex

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Se-
curityMassStatusRequest message

Table 4.8: SecurityMassStatusRequest (NGM-ex).

Tag Field Name Type Req Description

component block
<StandardHeader>

324 SecurityStatusReqID string Y

4.4.6 Security Stat Component Block

This component block is used to describe the status of a security.

Table 4.9: SecurityStat.

Tag Field Name Type Req Description

336 TradingSessionID string N Identifier for trading
session.
1=Day (regular session)
6=After-hours
(non-regular session)

84

4.4 Security Messages

Table 4.9: SecurityStat.

Tag Field Name Type Req Description

326 SecurityTradingStatus uInt32 N 2=Trading halt
4=No Open / No
Resume (closed)
17=Ready to trade
(open)
18=Not available for
trading (post open)
20=Unknown or Invalid
(Request Reject)
21=Pre-open
101=Opening auction
102=Closing auction

327 HaltReason uInt32 C Conditionally required
when
SecurityTradingStatus is
2 (Trading halt).
Denotes the reason for
the Opening Delay or
Trading Halt. ASCII
char enumeration.
’R’=Regulatory Halt
’O’=Other

328 InViewOfCommon uInt32 N Indicates whether or not
the halt was due to
common stock trading
being halted. ASCII char
enumeration (boolean).
’N’=Halt was not related
to a halt of the common
stock
’Y’=Halt was due to com-
mon stock being halted

329 DueToRelated uInt32 N Indicates whether or not
the halt was due to the
related security being
halted. ASCII char
enumeration (boolean).
’N’=Halt was not related
to a halt of the related
security
’Y’=Halt was due to
related security being
halted

85

Public Service

Table 4.9: SecurityStat.

Tag Field Name Type Req Description

292 CorporateAction string N Multiple char value
(delimited with space).
A=Ex-Dividend
C=Ex-Rights
I=Reverse Stock Split
J=Standard-Integer
Stock Split
Q=Tender Offer

291 FinancialStatus string N Multiple char value
(delimited with space).
All values are mutually
exclusive except ’Under
observation’ and ’Order
protection mode’ which
can appear together with
any of the others.
W=Knockout
X=Knockout buyback
Y=Knockout soft
U=Buyback
V=Distribution
Z=Under observation
D=Circuit breaker
dynamic
S=Circuit breaker static
M=Order protection
mode
P=Order protection
auction
R=Missing reference
price auction
Q=Manual matching
C=Recalculated

4.4.7 Security Status (f)

The Security Status message is used for unsolicited updates of security status
and for replies to a Security Mass Status Request.

SecurityStatus is sent:

� unsolicited, when a change occurs

86

4.5 Market Structure Messages

� in reply to a SecurityMassStatusRequest message, with SecurityStatusRe-
qID set to (copied from) the value in the request message

Table 4.10: SecurityStatus (f).

Tag Field Name Type Req Description

component block
<StandardHeader>

324 SecurityStatusReqID string N
912 LastRptRequested uInt32 N Indicates that this is the

last report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
Field added.
’N’=Not Last Message
’Y’=Last Message

component block <SecurityRef>
component block <SecurityStat>

4.5 Market Structure Messages

Each security belongs to one (and only one) market segment. The market
segments can be organized in a hierarchy, but market segments do not inherit
properties and status from their parent market segment. Each market segment
has one (and only one) trading session.

The status of a trading session is conveyed using the Trading Session Status
message, and this will affect all securities that follow the market segment (i.e. is
not trade halted, etc.). The status of each security is also sent individually using
the Security Status message. The timing between the trading session status and
the security status is not perfect which means that the security status should
used to see if e.g. the security is open for trading and the trading session status
should be used to see if the market segment is open or not.

4.5.1 Market Component Block

This component block is used to define a market.

Table 4.11: Market.

Tag Field Name Type Req Description

1301 MarketID string Y ISO 10383 Market Identi-
fier Code (MIC).

1300 MarketSegmentID string N Identifies the market seg-
ment.

87

Public Service

Table 4.11: Market.

Tag Field Name Type Req Description

1396 MarketSegmentDesc string N Description or name of
market segment.

1398 EncodedMktSegmDesc string N Encoded (non-ASCII) de-
scription or name of mar-
ket segment.

1325 ParentMktSegmID string N Reference to a parent
market segment.

component block
<SecurityDefaults>
component block <TradingRules>

4.5.2 Market Definition Request (BT)

A snapshot of the market structure can be obtained through a Market Definition
Request message. The request will be replied to with one or more Market Def-
inition messages. The last Market Definition message will always be indicated
with LastRptRequested field set to ’Y’. In the unlikely event that there are no
market or market segments defined a dummy Market Definition message with
MarketID set to ”[N/A]” and LastRptRequested field set to ’Y’ will be sent as a
response.

In the event of a malformed request, the response will be a Business Message
Reject message.

MarketDefinitionRequest:

� is replied to with a MarketDefinition message, with MarketReqID set to
(copied from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to BT

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Mar-
ketDefinitionRequest message

Table 4.12: MarketDefinitionRequest (BT).

Tag Field Name Type Req Description

component block
<StandardHeader>

1393 MarketReqID string Y Unique request id.
263 SubscriptionRequest-

Type
uInt32 Y ASCII char enumeration.

’0’=Snapshot

88

4.5 Market Structure Messages

4.5.3 Market Definition (BU)

The Market Definition message is used for delivering a snapshot of the market
structure.

MarketDefinition is sent:

� in reply to a MarketDefinitionRequest message, with MarketReqID set to
(copied from) the value in the request message

Table 4.13: MarketDefinition (BU).

Tag Field Name Type Req Description

component block
<StandardHeader>

1393 MarketReqID string N Reference to the request.
912 LastRptRequested uInt32 N Indicates that this is the

last report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
Field added.
’N’=Not Last Message
’Y’=Last Message

component block <Market>

4.5.4 Market Definition Update Report (BV)

The Market Definition Update Report message is used for delivering an incre-
mental update of the market structure.

MarketDefinitionUpdateReport is sent:

� unsolicited, when a change occurs

Table 4.14: MarketDefinitionUpdateReport (BV).

Tag Field Name Type Req Description

component block
<StandardHeader>

1394 MarketReportID string Y Unique identifier for each
MarketDefinitionUp-
dateReport message.

89

Public Service

Table 4.14: MarketDefinitionUpdateReport (BV).

Tag Field Name Type Req Description

1395 MarketUpdateAction uInt32 N ASCII char enumeration.
’A’=Add
’D’=Delete
’M’=Modify

component block <Market>

4.5.5 Trading Session Component Block

This component block is used to describe the trading session status of a market.

Table 4.15: TradingSession.

Tag Field Name Type Req Description

1301 MarketID string N Market for which Trading
Session applies.

1300 MarketSegmentID string N Market Segment for
which Trading Session
applies.

335 TradSesReqID string N Trading Session Status
Request ID

336 TradingSessionID string N Identifier for trading
session.
1=Day (regular session)
6=After-hours
(non-regular session)

340 TradSesStatus uInt32 Y State of the trading
session.
0=Unknown
1=Halted
2=Open
3=Closed
4=Pre-Open
5=Pre-Close
6=Request Rejected
7=Opening auction
8=Closing auction

90

4.5 Market Structure Messages

Table 4.15: TradingSession.

Tag Field Name Type Req Description

912 LastRptRequested uInt32 N Indicates that this is the
last message which will
be returned as a result of
the request. Field added.
ASCII char enumeration
(boolean).
’N’=Not Last Message
’Y’=Last Message

58 Text string N Error message.

4.5.6 Trading Session Status Request (g)

The status of the trading sessions (market segments) can be obtained through
the Trading Session Status Request message. The request will be replied to
with one or more Trading Session Status messages. The last Trading Session
Status message will always be indicated with LastRptRequested field set to ’Y’.
In the unlikely event that there is no market or trading session (market segment)
defined a dummy Trading Session Status message with MarketID set to ”[N/A]”
and LastRptRequested field set to ’Y’ will be sent as a response.

TradingSessionStatusRequest:

� is replied to with a TradingSessionStatus message, with TradSesReqID set
to (copied from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to g

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Trad-
ingSessionStatusRequest message

Table 4.16: TradingSessionStatusRequest (g).

Tag Field Name Type Req Description

component block
<StandardHeader>

335 TradSesReqID string Y Unique request id.
263 SubscriptionRequest-

Type
uInt32 Y ASCII char enumeration.

’0’=Snapshot

91

Public Service

4.5.7 Trading Session Status (h)

Provides information on the status of a market. The Trading Session Status
message is sent both as a reply to a previous request and unsolicited whenever
the status of a trading session changes.

TradingSessionStatus is sent:

� unsolicited, when a change occurs

� in reply to a TradingSessionStatusRequest message, with TradSesReqID
set to (copied from) the value in the request message

Table 4.17: TradingSessionStatus (h).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block
<TradingSession>

4.6 Market Data Messages

The MDEntryID field contains the trade id for trades and the public order id
for orders. The id is static, meaning that it will not change through the lifetime
of the order or the trade. It is not used for other entry types (e.g. high price).

Bid (’0’) MDEntryPx and MDEntrySize contains the price and volume of the
bid order or quote.

Offer (’1’) MDEntryPx and MDEntrySize contains the price and volume of
the offer order or quote.

Trade (’2’) MDEntryPx and MDEntrySize contains the price and volume of
the trade.

The statistics are maintained for session, day and official (day). The values
can be requested in a snapshot until they are generated or cleared next time.
Session can be defined as regular or non regular. Regular sessions is the regular
trading and define the closing price while the non-regular sessions do not affect
the closing price (typically after hours and similar). A non-regular session will
have TradingSessionID set to ”6” (After-hours), while the regular sessions will
have TradingSessionID set to ”1” (Day).

Session MDStatScope set to ”1”. The Session runs from the moment the secu-
rity status enters pre-open until it is closed. If a snapshot is requested it
will send the current statistics (in synchronization with incremental up-
dates) so the client can continue calculating the statistics with trades as

92

4.6 Market Data Messages

a basis. If a snapshot is asked when an order book is closed, the statistics
of the last session will be sent. When the statistics are reset at the start
of the pre-trade an increment with all values except closing (which will be
the closing of the previous regular session) set to 0 will be sent.

Day MDStatScope set to ”2”. The Day statistics start at 00:00 (market time)
and ends 23:59:59:999. If a snapshot is requested it will send the cur-
rent statistics (in synchronization with incremental updates) so the client
can continue calculating the statistics with trades as a basis. When the
statistics are reset at midnight an increment with all values except closing
(which will be the closing of the previous regular session) set to 0 will be
sent. Also note that the Day closing price can be set to the theoretical
price of an instrument, and must thus not necessarily be a direct reflection
of the trades conducted in the orderbook of the instrument.

Official Day MDStatScope set to ”3”. The Official Day statistics start at 00:00
(market time) until the regular session is closed. If a snapshot is requested
it will send the last official statistics that were sent (those generated at the
last regular session closing). When the statistics are updated at the closing
of a regular session an increment with all values will be sent. Note that
the Official Day statistics does not encompass after hours session trades
that occurs after the day session has ended, nor are trade cancellations
that take place after the closing resulting in a change of the stats. Also
note that the Official Day closing price can be set to the theoretical price
of an instrument, and must thus not necessarily be a direct reflection of
the trades conducted in the orderbook of the instrument.

Opening statistics for the day session and official day session is defined as
the first opening of any session and the last closing taken from a regular session.
Session, day and official day values are differentiated by the MDStatsScope field.
Figure 4.1 shows how closing prices are passed on to the next trading session as
reference prices.

93

Public Service

Day 1 Morning Main Evening

Day 2 Morning Main Evening

Day 3 Morning Main Evening

Day 4 Morning Main Evening

Figure 4.1: Green sessions are regular, white (and dashed) sessions are non-
regular (after-hours).

Opening and closing prices are sent whenever they are cleared or generated.
The closing price is generated when a regular session is closed. If no trade
was made during the session and no closing price was set by the market maker
organization, the previous closing price is sent. The session closing price can be
adjusted for corporate actions and trade cancellations in which case it will be
sent and receive a new timestamp.

Opening Price (’4’) MDEntryPx contains the price.

Closing Price (’5’) MDEntryPx contains the price. The TransactTime con-
tains the time the closing price was generated. A day or official day closing
price with the MarketMakerQuote field set to ’Y’ indicates that the closing
price is theoretical and based on the quotation of the market maker.

The following MDEntryTypes will only sent when they are reset (beginning of
trading session or day) and whenever they are changed due to a trade cancella-
tion. If the receiver need these values continuously they can be calculated based
on received trades. A trade will have the StatsIndicators set for the statistics it
affects. When a trade cancel occurs the affected MDEntryType will also be sent
with its new value. E.g. if a cancelled trade would affect the high price a new
high price is sent directly after the trade cancellation. This way the receiver do
not have to calculate the statistics based on cancelled trades, only new trades.

High Price (’7’) MDEntryPx contains the price. Updated when StatsIndica-
tors contains StatsType ”High/Low Price”.

Low Price (’8’) MDEntryPx contains the price. Updated when StatsIndica-
tors contains StatsType ”High/Low Price”.

First Price (’x’) MDEntryPx contains the price. Updated when StatsIndi-
cators contains StatsType ”Exchange Last”. The first price is updated

94

4.6 Market Data Messages

according to the trade time (TransBkdTime if present, otherwise Trans-
actTime) of trades (which need not be delivered in this order in case
of manually reported trades). TransactTime contains the first execution
time.

Last Price (’y’) MDEntryPx contains the price. Updated when StatsIndi-
cators contains StatsType ”Exchange Last”. The last price is updated
according to the trade time (TransBkdTime if present, otherwise Trans-
actTime) of trades (which need not be delivered in this order in case
of manually reported trades). TransactTime contains the last execution
time.

VWAP Turnover/Volume (’w’) MDEntryPx and MDEntrySize contains the
turnover and trade volume. The actual VWAP is calculated as the turnover
divided by the volume. Updated when StatsIndicators contains StatsType
”Average Price”.

Trade Volume (’B’) MDEntrySize contains the trade volume. Updated when
StatsIndicators contains StatsType ”Turnover”.

Late Trade Volume (’u’) The trade volume of late reported trades, e.g. from
previous day or session. MDEntrySize contains the trade volume. Updated
when StatsIndicators contains StatsType ”Late Turnover”. Note: This
value can be negative, e.g. if a trade from previous day or session is
cancelled.

Turnover (’z’) MDEntryPx contains the turnover. Updated when StatsIndi-
cators contains StatsType ”Turnover”.

Late Turnover (’v’) The turnover of late reported trades, e.g. from previ-
ous day or session. MDEntryPx contains the turnover. Updated when
StatsIndicators contains StatsType ”Late Turnover”. Note: This value
can be negative, e.g. if a trade from previous day or session is cancelled.

For any auction, opening auction, closing auction or circuit breaker auction,
the equilibrium price, available bid and ask volume are continuously dissemi-
nated during and upon entry of the auction for each orderbook. The equilibrium
price with available buy and sell volume are updated every time there is a change
in an orderbook but no more than once per second per orderbook. In the case
where an orderbook is not crossed, the fields equilibrium price and volume are
absent (null).

Both MDEntries Equilibrium Buy and Equilibrium Sell are sent synchronously
in pairs for each orderbook.

Equilibrium Buy (’b’) If the orderbook is crossed MDEntryPx contains the
equilibrium price and MDEntrySize contains available buy volume at equi-
librium price, otherwise MDEntryPx and MDEntrySize are absent (null).

Equilibrium Sell (’s’) If the orderbook is crossed MDEntryPx contains the
equilibrium price and MDEntrySize contains available sell volume at equi-
librium price, otherwise MDEntryPx and MDEntrySize are absent (null).

95

Public Service

4.6.1 MDEntry Component Block

This component block is used to define a market data entry, e.g. an order, trade
or closing price.

Table 4.18: MDEntry.

Tag Field Name Type Req Description

269 MDEntryType uInt32 Y ASCII char enumeration.
’0’=Bid
’1’=Offer
’2’=Trade
’4’=Opening Price
’5’=Closing Price
’7’=Trading Session High
Price
’8’=Trading Session Low
Price
’B’=Trade Volume
’u’=Late Trade Volume
’v’=Late Turnover
’w’=VWAP
Turnover/Volume
’x’=First Price
’y’=Last Price
’z’=Turnover
’b’=Equilibrium Buy
’s’=Equilibrium Sell
’r’=Accrued Interest
Rate (100 = 100

336 TradingSessionID string N Identifier for trading
session.
1=Day (regular session)
6=After-hours
(non-regular session)

20016 MDStatScope uInt32 N Defines the scope of the
statistics in periods of
time. Custom field.
1=Session
2=Day
3=Official Day

96

4.6 Market Data Messages

Table 4.18: MDEntry.

Tag Field Name Type Req Description

270 MDEntryPx decimal C Entry price.
Conditionally re-
quired in MDEntry-
Incr when MDUpdate-
Action is ’0’ (New)
and MDEntryType is
’2’ (Trade), ’v’ (Late
Turnover), ’w’ (VWAP
Turnover/Volume) or ’z’
(Turnover).

271 MDEntrySize decimal C Conditionally required in
MDEntryIncr when
MDUpdateAction
is ’0’ (New) and
MDEntryType is ’0’
(Bid), ’1’ (Offer), ’2’
(Trade), ’B’ (Trade
Volume) or ’w’ (VWAP
Turnover/Volume).
Entry quantity.

278 MDEntryID string N Refers to previ-
ous MDEntryID
when MDUpdateAc-
tion=Change or Delete.

290 MDEntryPositionNo uInt32 N Display position of a bid
or offer within a price
level, numbered from
most competitive to least
competitive, per market
side, beginning with 1.
This value is only set
when MDUpdateAction
is New or Change and
only if the value has
changed.

288 MDEntryBuyer string N Marketplace assigned
member code. Reveals
the buyer when
MDEntryType is Bid or
Trade and counterparties
are not hidden in the
security.

97

Public Service

Table 4.18: MDEntry.

Tag Field Name Type Req Description

289 MDEntrySeller string N Marketplace assigned
member code. Reveals
the seller when
MDEntryType is Offer
or Trade and
counterparties are not
hidden in the security.

574 MatchType uInt32 N Match type for trades.
ASCII char enumeration.
’1’=One-Party Trade
Report (privately
negotiated trade)
’2’=Two-Party Trade
Report (privately
negotiated trade)
’4’=Auto-match
’7’=Call Auction
’x’=Manually Matched
Trade Report

828 TrdType uInt32 N Trade type for trades.
0=Regular Trade
52=Exchange Granted
Trade

98

4.6 Market Data Messages

Table 4.18: MDEntry.

Tag Field Name Type Req Description

277 TradeCondition string N Trade conditions set by
exchange. Multiple char
value (delimited with
space).
0=Cancel (only used in
snapshot)
I=Sold Last (late
reporting)
AV=Outside Spread
X0=Outside Spread
Unknown
XB=Knockout buyback
Trade
XS=Buyback Trade
XD=Distribution Trade
XAO=Opening auction
Trade
XAC=Closing auction
Trade
XAD=Circuit breaker
dynamic auction Trade
XAS=Circuit breaker
static auction Trade
XAP=Order protection
auction Trade
XAR=Missing reference
price auction trade
6=Benchmark trade.
MiFID II regulatory field

1839 TrdPriceCondition uInt32 N Applies only to manual
trades. MiFID II
regulatory field.
13=Special dividend
Trade.
15=Non-price forming
Trade.
16=Trade not
contributing to the price
discovery process

2667 AlgorithmicTrd-
Indicator

uInt32 N MiFID II regulatory
field. Absence means ’0’.
0=Non-algorithmic trade
1=Algorithmic trade

99

Public Service

Table 4.18: MDEntry.

Tag Field Name Type Req Description

1115 OrdCategory uInt32 N Applies only to manual
trades. MiFID II
regulatory field.
3=Privately Negotiated
Trade

2668 TrdRegPublications sequence N Applies only to manual
trades. MiFID II regula-
tory field.

2669 →TrdRegPublication-
Type

uInt32 N
0=Pre-trade
transparency waiver

2670 →TrdRegPublReason uInt32 N
0=No preceding order in
book as transaction price
set within average spread
of a liquid instrument.
ESMA RTS ”NLIQ”.
1=No preceding order in
book as transaction price
depends on system-set
reference price for an
illiquid instrument.
ESMA RTS ”OILQ”.
2=No preceding order in
book as transaction price
is for transaction subject
to conditions other than
current market price.
ESMA RTS ”PRIC”.

1093 LotType uInt32 N Defines the lot type
assigned to the order.
ASCII char enumeration.
’1’=Odd Lot
’2’=Round Lot

60 TransactTime uInt64 N UTC timestamp when
the trade was executed
or when the order was
created, updated or can-
celled. For official statis-
tics this denotes the time
of calculation. Field
added (partially).

100

4.6 Market Data Messages

Table 4.18: MDEntry.

Tag Field Name Type Req Description

483 TransBkdTime uInt64 N UTC timestamp the
trade was booked, if
other than Transact-
Time. Used for manual
trade reports. Field
added (partially).

5797 AggressorSide uInt32 N Indicates which side is
aggressor of the trade. If
there is no value present,
then there is no
aggressor. ASCII char
enumeration. Custom
field.
’1’=Buy
’2’=Sell

20033 MarketMakerQuote uInt32 N Field added.. Indicates
that this MDEntry
originates from a Market
Maker quote. Only
applicable if
MDEntryType = ’0’, ’1’
or ’5’. ASCII char
enumeration (boolean).
Absence means ’N’.
’N’=Not Market Maker
Quote
’Y’=Market Maker
Quote

4.6.2 Market Data Request (V)

Market data (orders, trades, etc.) can be requested with the Market Data
Request message. The reply is one or more Market Data Snapshot Full Refresh
messages. Requested market data types (for example bid and offers or trades)
must be specified through specifying one or more Market Data Entry Types.
Only trades for the last 72 hours are available. Note that a reply with 0 repeating
market data entries may be sent as a reply. The last Market Data Snapshot
Full Refresh message will always be indicated with the LastRptRequested field
set to ’Y’. In the unlikely event that there are no securities defined a dummy
Market Data Snapshot Full Refresh message with SecurityID absent (null) and
LastRptRequested field set to ’Y’ will be sent as a response.
Parallel requests with equal MDReqID will be rejected, the requester should
either use a unique MDReqId for each request or perform the requests sequen-
tially.

101

Public Service

In the event of a malformed request, the response will be a Market Data
Request Reject message.

MarketDataRequest:

� is replied to with a MarketDataSnapshotFullRefresh message, with MDReqID
set to (copied from) the value in the request message

� can be rejected with a MarketDataRequestReject message, with MDReqRe-
jReason set to the reject reason and MDReqID set to (copied from) the
value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to V

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Mar-
ketDataRequest message

Table 4.19: MarketDataRequest (V).

Tag Field Name Type Req Description

component block
<StandardHeader>

262 MDReqID string Y Unique identifier for Mar-
ket Data Request.

263 SubscriptionRequest-
Type

uInt32 Y ASCII char enumeration.
’0’=Snapshot

264 MarketDepth uInt32 Y Valid values:
0=Full book

267 MDEntryTypes sequence Y Requested entry types.
Empty list means all en-
try types.

102

4.6 Market Data Messages

Table 4.19: MarketDataRequest (V).

Tag Field Name Type Req Description

269 →MDEntryType uInt32 Y ASCII char enumeration.
’0’=Bid
’1’=Offer
’2’=Trade
’4’=Opening Price
’5’=Closing Price
’7’=Trading Session High
Price
’8’=Trading Session Low
Price
’B’=Trade Volume
’u’=Late Trade Volume
’v’=Late Turnover
’w’=VWAP
Turnover/Volume
’x’=First Price
’y’=Last Price
’z’=Turnover
’r’=Accrued Interest
Rate (100 = 100

580 Dates sequence N Range of dates for re-
quested trades. Since
(NoDates=1) or Between
(NoDates=2) dates, in-
clusive. Sequence added.

60 →TransactTime uInt64 Y UTC timestamp the
trade was executed.

4.6.3 Market Data Snapshot Full Refresh (W)

Response to a Market Data Request.

MarketDataSnapshotFullRefresh is sent:

� in reply to a MarketDataRequest message, with MDReqID set to (copied
from) the value in the request message

Table 4.20: MarketDataSnapshotFullRefresh (W).

Tag Field Name Type Req Description

component block
<StandardHeader>

103

Public Service

Table 4.20: MarketDataSnapshotFullRefresh (W).

Tag Field Name Type Req Description

262 MDReqID string C Conditionally required
when this message is a
response to a request.

component block <SecurityRef>
268 MDEntries sequence Y

→ component block <MDEntry>
912 LastRptRequested uInt32 N Field added.. Indicates

that this is the last
report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
’N’=Not Last Message
’Y’=Last Message

4.6.4 Market Data Incremental Refresh (X)

Incremental (unsolicited) update of market data.

MarketDataIncrementalRefresh is sent:

� unsolicited, when a public change occurs in the market, for example order
updates, new trades, etc.

Table 4.21: MarketDataIncrementalRefresh (X).

Tag Field Name Type Req Description

component block
<StandardHeader>

268 MDEntries sequence Y
279 →MDUpdateAction uInt32 Y ASCII char enumeration.

’0’=New
’1’=Change
’2’=Delete

→ component block <SecurityRef>
→ component block <MDEntry>

1175 →StatsIndicators sequence N
1176 →→StatsType uInt32 Y Type of statistics.

1=Exchange Last
2=High / Low Price
3=Average Price
(VWAP, TWAP ...)
4=Turnover
100=Late Turnover

104

4.7 Corporate Action Messages

4.6.5 Market Data Request Reject (Y)

Reject of a Market Data Request in case of a malformed request.

MarketDataRequestReject is sent:

� to reject a MarketDataRequest message, with MDReqRejReason set to the
reject reason and MDReqID set to (copied from) the value in the request
message

Table 4.22: MarketDataRequestReject (Y).

Tag Field Name Type Req Description

component block
<StandardHeader>

262 MDReqID string Y Refers to the request.
281 MDReqRejReason uInt32 N ASCII char enumeration.

’1’=Duplicate MDReqID
’2’=Insufficient
Bandwidth
’3’=Insufficient
Permissions
’4’=Unsupported Sub-
scriptionRequestType
’5’=Unsupported
MarketDepth
’6’=Unsupported
MDUpdateType
’8’=Unsupported
MDEntryType
’A’=Unsupported Scope
’x’=Invalid

58 Text string N Error message.

4.7 Corporate Action Messages

4.7.1 Corp Action Component Block

This component block defines a corporate action, such as a split. The corporate
action message defines a corporate action and it’s parameters while the flag in
the security status is meerly an indicator for the trader to be observant of events
that will or recently has occured. Notice that a corporate action that has been
executed may never be deleted and only the description may be modified.

105

Public Service

Table 4.23: CorpAction.

Tag Field Name Type Req Description

20004 CorpActionType uInt32 N The type of corporate
action. Custom field.
0=Cash dividend
1=Split
2=Reverse-split
3=Rights issue
99=Other

20005 CorpActionID string N Unique identifier for this
corporate action event.
Custom field.

20008 CorpActionDescr string N Textual description of the
corporate action. Cus-
tom field.

20010 CorpActionStatus uInt32 N Custom field.
0=Not executed
1=Executed

20017 ExTime uInt64 N UTC timestamp when
this corporate action
takes effect. Custom
field.

60 TransactTime uInt64 N UTC timestamp this cor-
porate action was created
or updated.

20006 AdjustmentFactor-
Numerator

uInt32 N The adjustmentfactor of
a corporate action is the
numerator divided by
the denominator and is
used when adjusting
historical values for the
corporate action. Prices
should be multiplied
with the factor while
quantities should be
divided by the factor.
Custom field.

106

4.7 Corporate Action Messages

Table 4.23: CorpAction.

Tag Field Name Type Req Description

20022 AdjustmentFactor-
Denominator

uInt32 N The adjustmentfactor of
a corporate action is the
numerator divided by
the denominator and is
used when adjusting
historical values for the
corporate action. Prices
should be multiplied
with the factor while
quantities should be
divided by the factor.
Custom field.

20007 Dividend decimal N Dividend, 3 decimal pre-
cision. Custom field.

4.7.2 Corporate Action Report (U1)

The Corporate Action Report is used for unsolicited updates of corporate actions
and as a response to a Corporate Action Request. The field CorpUpdateAction
is absent (null) in a snapshot response.

CorporateActionReport is sent:

� unsolicited, when a change occurs

� in reply to a CorporateActionRequest message, with CorpActionResult set
to 0 (Succeeded) and CorpActionReqID set to (copied from) the value in
the request message

� to reject a CorporateActionRequest message, with CorpActionResult set to
1 (InvalidRequest) and CorpActionReqID set to (copied from) the value
in the request message

Table 4.24: CorporateActionReport (U1).

Tag Field Name Type Req Description

component block
<StandardHeader>
component block <SecurityRef>

20009 CorpActionReqID string N Unique request identifier.
Custom field.

107

Public Service

Table 4.24: CorporateActionReport (U1).

Tag Field Name Type Req Description

20012 CorpActionResult uInt32 N Result returned to a
Corporate Action
Request message.
Custom field.
0=Succeeded (default)
1=Invalid or
unsupported request

912 LastRptRequested uInt32 N Indicates that this is the
last report which will be
returned as a result of
the request. ASCII char
enumeration (boolean).
’N’=Not Last Message
’Y’=Last Message

20011 CorpUpdateAction uInt32 N The update action of an
incremental update.
Absent in a snapshot
response. ASCII char
enumeration. Custom
field.
’A’=Add
’D’=Delete
’M’=Modify

component block <CorpAction>

4.7.3 Corporate Action Request (U2)

All corporate actions can be requested with the Corporate Action Request mes-
sage. The reply is one or more Corporate Action Report messages. The last
Corporate Action Report message will always be indicated with the LastRp-
tRequested field set to ’Y’. In the event that there are no corporate actions a
dummy Corporate Action Report message with SecurityID absent (null) and the
LastRptRequested field set to ’Y’ will be sent as a response. All planned and
already executed Corporate Actions will be sent.

In the event of a malformed request, the response will be a Corporate Action
Report message with the CorpActionResult field set to 1 (Invalid or unsupported
request).

CorporateActionRequest:

� is replied to with a CorporateActionReport message, with CorpActionRe-
sult set to 0 (Succeeded) and CorpActionReqID set to (copied from) the
value in the request message

108

4.7 Corporate Action Messages

� can be rejected with a CorporateActionReport message, with CorpAction-
Result set to 1 (InvalidRequest) and CorpActionReqID set to (copied
from) the value in the request message

� can be rejected with a BusinessMessageReject message, with BusinessRe-
jectReason set to the reject reason and RefMsgType set to U2

� can be rejected with a Reject message, with SessionRejectReason set to
the reject reason and RefSeqNum set to the sequence number of the Cor-
porateActionRequest message

Table 4.25: CorporateActionRequest (U2).

Tag Field Name Type Req Description

component block
<StandardHeader>

20009 CorpActionReqID string Y Unique request identifier.
Custom field.

109

Public Service

110

Chapter 5

FAST Encoding and
Templates

The FIX messages described in this specification are encoded with FAST 1.11

meaning that the traditional ASCII encoding (“Tag=Value”) is not supported.
FAST SCP (Session Control Protocol) 1.1 level 2 is used as a thin layer on top
of TCP which is used as the transport protocol. The FAST SCP 1.1 level 2
provides messages like Hello, Alert and Reset for logon, notification and FAST
specific functionality such as dictionary reset.

A FAST stream can be sent as a sequence of messages or blocks where each
block consists of a sequence of messages, in addition a block size is preceding
each block. NGM uses blocks with one message per block. The block size value
specifies the size in bytes of the following message, not including the size of the
actual block size field. According to FAST 1.12, the block size should be an
unsigned interger that may be overlong, NGM has chosen to encode the block
size as a 4 byte overlong unsigned integer.

The FIXT (FIX Transport) session messages (see section 2.5) are used for
maintaining FIX sessions, which are typically long lived sessions spanning sev-
eral FAST SCP/TCP connections.

blockSize #1 message #1 blockSize #2 message #2 ...

4 bytes blockSize #1 bytes 4 bytes blockSize #2 bytes

Figure 5.1: FAST block size.

5.1 Data Types

This section describes how FIX data types are encoded in FAST. Note that the
type column in the message tables contains the FAST type that is used.

1See FAST Specification 1.x.1, http://www.fixtradingcommunity.org/pg/structure/tech-
specs/fast-protocol

2See FAST Specification 1.x.1 chapter 10

111

FAST Encoding and Templates

Note that 32 and 64-bit unsigned integers only support 31 and 63 bits re-
spectively.

5.1.1 Strings

All non-encoded strings are treated as ASCII (7-bit). Non-ASCII strings can be
sent in the encoded fields (e.g. EncodedIssuer). The only supported encoding
for those fields is UTF-8 (unicode string in FAST). The encoded representation
is only present when the encoded value differs from the non-encoded value.
Whenever the encoded value is present the non-encoded value is also present.

XML data fields (e.g. SecurityXML) are UTF-8 encoded (unicode string in
FAST).

5.1.2 Identifiers

Any identifiers that are ASCII strings are accepted. Identifiers generated by
NGM are restricted to contain A-Z, 0-9 and the characters +-:.,? and the
maximum length is 16.

5.1.3 Enumerations

In FIX several types are used for enumerations: integer, ASCII char and ASCII
string. In most cases when a string is used for enumerations only one character
is used, which means it can easily be reduced to the char case.

In FAST both integer enumerations and ASCII char enumerations are en-
coded as unsigned 32-bit integers, while in the ASCII char enumeration case the
value will always be an ASCII character code. In the documentation these enum
types will be differentiated by single quotes around the ASCII char enums, e.g.
’1’ means 49.

5.1.4 Timestamps and Dates

UTC timestamps fields are encoded as microseconds since January 1, 1970 UTC,
as a 64-bit unsigned integer. Leap seconds are not added, which is the same way
as POSIX (and Java as it seems) does it. This means that all days have exactly
24∗3600∗1000000 microseconds. For example the timestamp difference between
31 dec 2008 23:59:00 and 1 jan 2009 00:01:00 is reported as 120 seconds and not
the correct UTC difference which is 121 seconds since a leap second should be
added 31 dec 2008 23:59:60.

Other dates and timestamps than UTC are encoded as ASCII string as
specified in FIX.

5.2 Templates

The FAST templates specifies how messages are encoded. Static FAST tem-
plates are used and any changes to the templates are considered a protocol
change.

FAST templates need to be mapped to FIX messages. The following map-
ping rules are used.

112

5.2 Templates

� Message level: FIX message name as appearing in the FIX repository (e.g.
”NewOrderSingle”) = FAST application type (typeRef).

� Field level: FIX field tag = FAST field aux id.

� Type conversion: No type conversion is made. E.g. a FIX field of string
type requires that the corresponding FAST field is also of string type.

� Missing fields in FAST: If a FIX field is missing in the FAST template, the
field is assumed to be absent. This is only valid for optional FIX fields.

� Sequence fields: Sequence fields in FAST are mapped to the corresponding
NoXXX field in FIX, e.g. for NoSides (552) the FAST sequence aux id
should be 552.

� Group fields in FAST: FAST group fields are flattened before mapping to
FIX.

� Dynamic template ref in FAST: Not supported.

Because of this mapping, the FIX field MsgType is not really required for
message type identification.

113

FAST Encoding and Templates

114

Appendix A

MiFID II Regulatory fields

A.1 Post trade transparency

MiFID II regulatory post-trade information mapping against FIX fields.

� BENCH

– Private service: SecondaryTrdType(855) = 64 (Benchmark trade)

– Public service: TradeCondition(277) = 6 (Benchmark trade)

� NPFT

– TrdPriceCondition(1839) = 15 (Non price forming trade)

� TNCP

– TrdPriceCondition(1839) = 16 (Trade not contributing to the price
discovery process)

� SDIV

– TrdPriceCondition(1839) = 13 (Special dividend trade)

� ALGO

– AlgorithmicTrdIndicator(2667) = 1 (Algorithmic trade)

� NLIQ

– TrdRegPublicationType(2669) = 0 (Pre-trade transparency waiver)

– TrdRegPublicationReason(2670) = 0 (No preceding order in book as
transaction price set within average spread of a liquid instrument)

� OILQ

– TrdRegPublicationType(2669) = 0 (Pre-trade transparency waiver)

– TrdRegPublicationReason(2670) = 1 (No preceding order in book as
transaction price depends on system-set reference price for an illiquid
Instrument)

115

MiFID II Regulatory fields

� PRIC

– TrdRegPublicationType(2669) = 0 (Pre-trade transparency waiver)

– TrdRegPublicationReason(2670) = 2 (No preceding order in book as
transaction price is subject to conditions other than current market
price)

A.2 Order Record Keeping

A.2.1 Description of the different party roles

For EU markets it is mandatory to provide party information on orders and
quotes and the information in this chapter applies. If not sure, consult the
Market Model or the market place for information on whether it is required to
supply party information.

� Only identifiers in the form of short codes are allowed to be sent over the
NGM FIX Protocol.

� PartyID values 0-10 are reserved and must not be used to identify any
party.

� The short code together with the PartyRoleQualifier is the unique identi-
fier for a mapping.

� Information on the mapping between a short code + role (PartyRoleQual-
ifier) and the actual identifier (National ID, LEI and Algorithm ID) must:

- never change over time

- be provided separately, outside of the NGM FIX Protocol,

- have been supplied before to the first usage of the short code in the
protocol, or latest by the end of the actual calendar day that the short
code is first used (see the Market Model for details).

Client Identification (PartyRole = 3) Used to identify the client of the mem-
ber or participant of the trading venue.

� In case of that there is no client for an order, the PartyID should be
set to 0 (=NONE) for PartyRole = 3.

� In case of aggregated orders, the PartyID should be set to 1 (=AGGR)
for PartyRole = 3.

� In case of pending allocations, the PartyID should be set to 2 (=PNAL)
for PartyRole = 3.

Executing Trader (PartyRole = 12) Used to identify the person or algorithm
within the member or participant of the trading venue who is responsible
for the execution of the transaction resulting from the order or the quote.
Executing Trader is required to be specified on all orders and quotes.

116

A.2 Order Record Keeping

� In case of the time and venue of the order is instructed by the client
of the member or participant of the trading venue the PartyID should
be set to 3 (=CLIENT) for PartyRole = 12.

Investment Decision Maker (PartyRole = 122) Used to identify the person
or the algorithm within the member or participant of the trading venue
who is responsible for the investment decision.

A.2.2 Orders

� Party information is required on the first submission of an order (New
Order Single)

� Party information is not possible to change after the first submission.

� Party information is acknowledged in ExecutionReports.

� If a PartyRole is populated in an order, it is required that the accom-
panying fields PartySourceID, PartyID and PartyRoleQualifier are also
populated.

� Client identification is mandatory for orders.

� Executing Trader (PartyRole = 12) is mandatory for orders.

� Investment Decision Maker (PartyRole = 122) shall not be set when the
investment decision was not made by a person or algorithm within the
member or participant of the exchange.

A.2.3 Quotes

� Party information is required on the first entry of a quote

� Party information must not be set in subsequent updates of the quote.

� If party information is supplied in updates of a quote, then the update is
rejected.

� Party information is only acknowledged in the first QuoteStatusReport.

� If a PartyRole is populated in a quote, it is required that the accompanying
fields PartySourceID, PartyID and PartyRoleQualifier are also populated.

� Executing Trader (PartyRole = 12) is mandatory for quotes.

� If the Investment Decision Maker (PartyRole = 122) is not set, the Party-
RoleQualifier, PartyIDSource and PartyID values for the Executing Trader
will be implicitly used for the identification of the Investment Decision
Maker.

117

MiFID II Regulatory fields

118

Appendix B

Manually Matched
Orderbooks

B.1 Overview

Orders in a manually matched orderbook are not matched automatically. This is
instead handled by a designated broker trader group by using the Trade Capture
Report message with the Manual Match Report model.

B.2 Manual Match Report

In the manual match report model no Trade Capture Report Ack is sent in
response to a successful request. The confirmed trade is sent directly instead.
The fields are used in the following way in this model.

Designated broker sub-
mit to marketplace.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Two-Party Report (’1’)
MatchType = Manually Matched Trade Report
(’x’)
LastPx = <trade price>
LastQty = <trade volume>

Sides =

Side = Buy (’1’)
OrderId = <reference>
Side = Sell (’2’)
OrderId = <reference>

TradeReportID=<new>

119

Manually Matched Orderbooks

Marketplace confirm
trade to buyer and
seller.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Confirm (’0’)
MatchType = Manually Matched Trade Report
(’x’)
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

Marketplace confirm
trade to designated
broker.

Trade Capture Report
TradeReportTransType = New (0)
TradeReportType = Submit (0)
TradeHandlingInstr = Trade Confirm (’0’)
MatchType = Manually Matched Trade Report
(’x’)
TradeReportRefID=<designated broker’s>
TradeReportID=<new>
TradeID=<reference>
MatchStatus = Affirmed (’0’)

Reject from mar-
ketplace in response
a malformed Trade
Capture Report.

Trade Capture Report Ack
TradeReportTransType = <same>
TradeReportType = <same>
TradeHandlingInstr = Two-Party Report (’1’)
TradeReportRefID=<same>
TradeReportID=<same>
TradeReportRejectReason=<specified>

120

	Overview
	About this Document

	General Service Information
	Recovery
	Filtering
	User filtering parameters

	Throughput Limit
	Message Throughput
	Snapshot Throughput

	Component Blocks
	Standard Header
	Security Ref

	Session Messages
	Logon (A)
	Logout (5)
	TestRequest (1)
	Heartbeat (0)
	SequenceReset (4)
	Reject (3)

	General Application Level Messages
	Business Message Reject (j)

	Private Service
	User Model
	Action on Connection Loss
	Full Snapshot Recovery
	Provider Connection
	Supported messages

	Message Overview
	Filtering Examples

	Parties Information
	Parties Component Block

	Order Messages
	Order Component Block
	Order Attributes Grp Component Block
	New Order Single (D)
	Order Cancel/Replace Request (G)
	Order Cancel Request (F)
	Execution Report (8)
	Order Cancel Reject (9)
	Order Mass Status Request (AF)

	Quote Messages
	Quote Grp Component Block
	Quote (S)
	Quote Status Report (AI)
	Quote Cancel (Z)
	Quote Request (R)
	Quote Status Request (a)

	Trade Messages
	One-Party Report for Pass-Thru
	Two-Party Report
	Trade Component Block
	Trade Capture Report (AE)
	Trade Capture Report Ack (AR)
	Trade Capture Report Request (AD)
	Trade Capture Report Request Ack (AQ)

	Financial Status Messages
	User Security Status Update Request (FU)
	User Security Status Update Response (FR)

	Public Service
	Full Snapshot Recovery
	Message Overview
	Filtering Examples

	Component Blocks
	Security Defaults
	Trading Rules

	Security Messages
	Security Component Block
	Security List Request (x)
	Security List (y)
	Security Definition Update Report (BP)
	Security Mass Status Request (NGM-ex)
	Security Stat Component Block
	Security Status (f)

	Market Structure Messages
	Market Component Block
	Market Definition Request (BT)
	Market Definition (BU)
	Market Definition Update Report (BV)
	Trading Session Component Block
	Trading Session Status Request (g)
	Trading Session Status (h)

	Market Data Messages
	MDEntry Component Block
	Market Data Request (V)
	Market Data Snapshot Full Refresh (W)
	Market Data Incremental Refresh (X)
	Market Data Request Reject (Y)

	Corporate Action Messages
	Corp Action Component Block
	Corporate Action Report (U1)
	Corporate Action Request (U2)

	FAST Encoding and Templates
	Data Types
	Strings
	Identifiers
	Enumerations
	Timestamps and Dates

	Templates

	MiFID II Regulatory fields
	Post trade transparency
	Order Record Keeping
	Description of the different party roles
	Orders
	Quotes

	Manually Matched Orderbooks
	Overview
	Manual Match Report

